Subnormal tuples on strictly pseudoconvex and bounded symmetric domains

被引:0
|
作者
Didas, Michael [1 ]
Eschmeier, Joerg [1 ]
机构
[1] Univ Saarland, Fachrichtung Math, Postfach 151150, D-66041 Saarbrucken, Germany
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2005年 / 71卷 / 3-4期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multivariable extensions of the Scott Brown technique are used to prove that on a quite general class of domains D in C-n, or in a complex submanifold of C-n, each subnormal tuple T is an element of L(H)(n) with an isometric weak* continuous H-infinity(D)-functional calculus is reflexive. To obtain our results we use methods developed by Aleksandrov in his abstract approach to the inner function problem, and we prove new results for Henkin measures on suitable complex domains.
引用
收藏
页码:691 / 731
页数:41
相关论文
共 50 条