HAMILTON CYCLES AND EIGENVALUES OF GRAPHS

被引:50
|
作者
VANDENHEUVEL, J
机构
[1] Department of Mathematics, Statistics Simon Fraser University Burnaby
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0024-3795(95)00254-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some results concerning necessary conditions for a graph to be Hamiltonian in terms of eigenvalues of certain matrices associated with the graph. As an example, we show bow the results give an easy algebraic proof of the nonexistence of a Hamilton cycle in two graphs, one of them being the Petersen graph.
引用
收藏
页码:723 / 730
页数:8
相关论文
共 50 条
  • [1] Hamilton cycles and eigenvalues of graphs
    van, den Heuvel, J.
    Linear Algebra and Its Applications, 1995, 226-228
  • [2] Hamilton cycles in pseudorandom graphs
    Glock, Stefan
    Correia, David Munha
    Sudakov, Benny
    ADVANCES IN MATHEMATICS, 2024, 458
  • [3] HAMILTON CYCLES IN CUBIC GRAPHS
    Chia, G. L.
    Ong, Siew-Hui
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (03) : 251 - 259
  • [4] Collapsible graphs and Hamilton cycles of line graphs
    Li, Xiangwen
    Xiong, Yan
    DISCRETE APPLIED MATHEMATICS, 2015, 194 : 132 - 142
  • [5] Hamilton cycles in random graphs and directed graphs
    Cooper, C
    Frieze, A
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (04) : 369 - 401
  • [6] Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs
    Nenadov, Rajko
    Skoric, Nemanja
    RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (01) : 187 - 208
  • [7] DIRECTED HAMILTON CYCLES IN DIGRAPHS AND MATCHING ALTERNATING HAMILTON CYCLES IN BIPARTITE GRAPHS
    Zhang, Zan-Bo
    Zhang, Xiaoyan
    Wen, Xuelian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 274 - 289
  • [8] Hamilton cycles in Trivalent Cayley graphs
    Wagh, MD
    Mo, JC
    INFORMATION PROCESSING LETTERS, 1996, 60 (04) : 177 - 181
  • [9] COLORFUL HAMILTON CYCLES IN RANDOM GRAPHS
    Chakraborti, Debsoumya
    Frieze, Alan M.
    Hasabnis, Mihir
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (01) : 51 - 64
  • [10] HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS
    Balogh, Jozsef
    Bollobas, Bela
    Krivelevich, Michael
    Muller, Tobias
    Walters, Mark
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (03): : 1053 - 1072