ON COMPLETENESS OF EXPONENTIAL SYSTEMS IN CONVEX DOMAIN

被引:0
|
作者
Makhota, A. A. [1 ]
机构
[1] Bashkir State Univ, Zaki Validi Str 32, Ufa 450076, Russia
来源
UFA MATHEMATICAL JOURNAL | 2018年 / 10卷 / 01期
关键词
completeness of a system; convex domain; entire function; Fourier-Laplace transform;
D O I
10.13108/2018-10-1-76
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work is devoted to studying the completeness of the systems of exponentials in the space of functions analytic in a convex domain. The problem on the completeness of the systems of the exponentials in various functional spaces is classical and was studied by many mathematicians, for instance, by B.Ya. Levin, A.F. Leontiev, A.M. Sedletskii, B.N. Khabibullin, R.S. Yulmukhametov, and others. We prove that the completeness of the system of exponentials in the space of functions analytic in a convex domain is equivalent to the completeness of the system of exponentials in the space of functions analytic in a circle with the radius depending on the properties of a given convex domain. We also consider an example by choosing an ellipse as the convex domain. Here we find the values of the support function and the radius of the corresponding circle.
引用
收藏
页码:76 / 79
页数:4
相关论文
共 50 条
  • [1] Sparse exponential systems: Completeness with estimates
    Shahaf Nitzan-Hahamov
    Alexander Olevskii
    Israel Journal of Mathematics, 2007, 158 : 205 - 215
  • [2] Sparse exponential systems: Completeness with estimates
    Nitzan-Hahamov, Shahaf
    Olevskii, Alexander
    ISRAEL JOURNAL OF MATHEMATICS, 2007, 158 (01) : 205 - 215
  • [3] Completeness of exponential systems in weighted spaces on the real axis
    Napalkov, V. V.
    Rumyantseva, A. A.
    Yulmukhametov, R. S.
    DOKLADY MATHEMATICS, 2009, 80 (03) : 810 - 813
  • [4] Completeness of exponential systems in weighted spaces on the real axis
    V. V. Napalkov
    A. A. Rumyantseva
    R. S. Yulmukhametov
    Doklady Mathematics, 2009, 80 : 810 - 813
  • [5] Absolute completeness of systems of exponentials on convex compact sets
    Krasichkov-Ternovskii, IF
    Shilova, GN
    SBORNIK MATHEMATICS, 2005, 196 (11-12) : 1801 - 1814
  • [6] Stability of Completeness for Systems of Exponentials on Compact Convex Sets in ℂ
    B. N. Khabibullin
    Mathematical Notes, 2002, 72 : 542 - 550
  • [7] Completeness of certain exponential systems and zeros of lacunary polynomials
    Kulikov, Aleksei
    Ulanovskii, Alexander
    Zlotnikov, Ilya
    ADVANCES IN MATHEMATICS, 2023, 421
  • [8] Integral Formulas for Subharmonic and Meromorphic Functions and Completeness of Exponential Systems
    Khabibullin B.N.
    Menshikova E.B.
    Lobachevskii Journal of Mathematics, 2024, 45 (1) : 434 - 442
  • [9] Polynomial Approximations in a Convex Domain in ℂ n with Exponential Decay Inside
    Shirokov N.A.
    Journal of Mathematical Sciences, 2022, 268 (6) : 838 - 849
  • [10] Stability of completeness for systems of exponentials on compact convex sets in C
    Khabibullin, BN
    MATHEMATICAL NOTES, 2002, 72 (3-4) : 542 - 550