NEOCLASSICAL POLOIDAL AND TOROIDAL ROTATION IN TOKAMAKS

被引:312
|
作者
KIM, YB
DIAMOND, PH
GROEBNER, RJ
机构
[1] UNIV CALIF LOS ANGELES,LOS ANGELES,CA 90024
[2] GEN ATOM CO,SAN DIEGO,CA 92138
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1991年 / 3卷 / 08期
关键词
D O I
10.1063/1.859671
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.
引用
收藏
页码:2050 / 2060
页数:11
相关论文
共 50 条
  • [1] Neoclassical calculation of poloidal rotation and poloidal density asymmetries in tokamaks
    Stacey, WM
    PHYSICS OF PLASMAS, 2002, 9 (09) : 3874 - 3883
  • [2] Extension and comparison of neoclassical models for poloidal rotation in tokamaks
    Stacey, W. M.
    PHYSICS OF PLASMAS, 2008, 15 (01)
  • [3] NEOCLASSICAL IMPURITY TRANSPORT IN THE PRESENCE OF TOROIDAL AND POLOIDAL ROTATION
    FENEBERG, W
    NUCLEAR FUSION, 1989, 29 (07) : 1117 - 1124
  • [4] Experimental test of the neoclassical theory of impurity poloidal rotation in tokamaks
    Solomon, W. M.
    Burrell, K. H.
    Andre, R.
    Baylor, L. R.
    Budny, R.
    Gohil, P.
    Groebner, R. J.
    Holcomb, C. T.
    Houlberg, W. A.
    Wade, M. R.
    PHYSICS OF PLASMAS, 2006, 13 (05)
  • [5] Neoclassical poloidal plasma rotation in tokamaks during radio frequency heating
    Liu, C
    Weyssow, B
    PHYSICS OF PLASMAS, 2001, 8 (10) : 4390 - 4402
  • [6] POLOIDAL ROTATION IN TOKAMAKS
    HASSAM, AB
    KULSRUD, RM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1089 - 1089
  • [7] Intrinsic plasma rotation determined by neoclassical toroidal plasma viscosity in tokamaks
    Sun, Y.
    Shaing, K. C.
    Liang, Y.
    Casper, T.
    Loarte, A.
    Shen, B.
    Wan, B.
    NUCLEAR FUSION, 2013, 53 (09)
  • [8] Experimental analyses and predictive simulations of toroidal rotation driven by the neoclassical toroidal viscosity in rippled tokamaks
    Honda, M.
    Satake, S.
    Suzuki, Y.
    Matsunaga, G.
    Shinohara, K.
    Yoshida, M.
    Matsuyama, A.
    Ide, S.
    Urano, H.
    NUCLEAR FUSION, 2014, 54 (11)
  • [9] Effects of neoclassical toroidal viscosity induced by the intrinsic error fields and toroidal field ripple on the toroidal rotation in tokamaks
    Lee, H. H.
    Seol, J.
    Ko, W. H.
    Terzolo, L.
    Aydemir, A. Y.
    In, Y.
    Ghim, Y. -C.
    Lee, S. G.
    PHYSICS OF PLASMAS, 2016, 23 (08)
  • [10] NEOCLASSICAL TRANSPORT OF TOROIDAL MOMENTUM IN TOKAMAKS
    WARE, AA
    PHYSICAL REVIEW LETTERS, 1990, 64 (22) : 2655 - 2658