A MIXED SYSTEM OF EQUATIONS OF ELASTICITY

被引:4
|
作者
Shul'ga, M. O. [1 ]
机构
[1] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, 3 Nesterov St, UA-03057 Kiev, Ukraine
关键词
mixed system of equations of elasticity; Hamiltonian (canonical) operator system; Hellinger-Reissner principle; variational principle with an operator integrand; Euler equations;
D O I
10.1007/s10778-010-0306-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A mixed system of six equations of elasticity is represented as a Hamiltonian (canonical) operator system in one of the spatial coordinates. It is shown that this system is the Euler equations for the Hellinger-Reissner principle with an appropriately modified integrand. One more functional with an operator integrand from which the canonical operator system can be derived is set up
引用
收藏
页码:264 / 268
页数:5
相关论文
共 50 条
  • [1] MIXED PROBLEM FOR EQUATIONS OF MICROPOLAR ELASTICITY
    KOLAKOWSKI, H
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1977, 25 (09): : 765 - 768
  • [2] A Cauchy problem for the system of elasticity equations
    Makhmudov, OI
    Niezov, IE
    DIFFERENTIAL EQUATIONS, 2000, 36 (05) : 749 - 754
  • [3] A cauchy problem for the system of elasticity equations
    O. I. Makhmudov
    I. E. Niezov
    Differential Equations, 2000, 36 : 749 - 754
  • [4] Mixed variational principle in elasticity theory and canonical systems of equations
    N. P. Semenyuk
    V. M. Trach
    N. B. Zhukova
    International Applied Mechanics, 2007, 43 : 519 - 525
  • [5] Mixed variational principle in elasticity theory and canonical systems of equations
    Semenyuk, N. P.
    Trach, V. M.
    Zhukova, N. B.
    INTERNATIONAL APPLIED MECHANICS, 2007, 43 (05) : 519 - 525
  • [6] New mixed finite elements for plane elasticity and Stokes equations
    Xie XiaoPing
    Xu JinChao
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1499 - 1519
  • [7] New mixed finite elements for plane elasticity and Stokes equations
    XIE XiaoPing1
    2Department of Mathematics
    ScienceChina(Mathematics), 2011, 54 (07) : 1499 - 1519
  • [8] FINITE ELEMENT SPECTRAL ANALYSIS FOR THE MIXED FORMULATION OF THE ELASTICITY EQUATIONS
    Meddahi, Salim
    Mora, David
    Rodriguez, Rodolfo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1041 - 1063
  • [9] A BOUNDARY INTEGRAL EQUATIONS APPROACH FOR MIXED IMPEDANCE PROBLEMS IN ELASTICITY
    Athanasiadis, C. E.
    Natroshvili, D.
    Sevroglou, V.
    Stratis, I. G.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2011, 23 (02) : 183 - 222
  • [10] New mixed finite elements for plane elasticity and Stokes equations
    XiaoPing Xie
    JinChao Xu
    Science China Mathematics, 2011, 54 : 1499 - 1519