Automatically Affinity Propagation Clustering using Particle Swarm

被引:6
|
作者
Wang, Xian-hui [1 ]
Qin, Zheng [1 ,2 ]
Zhang, Xuan-ping [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Shaanxi, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatically Affinity Propagation Clustering; Particle Swarm Optimization; Clustering Validation Indexes; Boundary Checking (BC) rule; preferences" (p) interval;
D O I
10.4304/jcp.5.11.1731-1738
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Affinity propagation (AP) is a clustering algorithm which has much better performance than traditional clustering approach such as K-means algorithm. AP can usually find a moderate clustering number, but "moderate" usually may not be the "optimal". If we have found the optimal clustering number of AP, to estimate the input "preferences" (p) and the effective corresponding "preferences" (p) interval from the data sets is hard. In this paper, we propose a new approach called Automatically Affinity Propagation Clustering (AAP). Our AAP method is absolutely "automatic". AAP represents the issue of finding the optimal AP clustering and the corresponding "preferences" (p) interval as an optimization problem of searching optimal solution of the input "preferences" (p). AAP searches the "preferences" (p) space using Particle Swarm Optimization (PSO) algorithm, and evaluates the particles' fitness using clustering validation indexes. In order to prevent particles from flying out of defined region, we used Boundary Checking (BC) rule to check the validity of particles' positions of PSO. According to lots of AAP's independent runs results, we can find AP's optimal clustering number and estimate the corresponding "preferences" (p) interval. One artificial data set and several real-world data sets are presented to illustrate the simplicity and effectiveness of AAP.
引用
收藏
页码:1731 / 1738
页数:8
相关论文
共 50 条
  • [1] Automatically Determining the Number of Affinity Propagation Clustering using Particle Swarm
    Wang, Xian-hui
    Zhang, Xuan-ping
    Zhuang, Chun-xiao
    Chen, Zu-ning
    Qin, Zheng
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 3, 2010, : 374 - 378
  • [2] An affinity propagation clustering based particle swarm optimizer for dynamic optimization
    Liu, Yuanchao
    Liu, Jianchang
    Jin, Yaochu
    Li, Fei
    Zheng, Tianzi
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [3] Particle swarm optimizer for automatically clustering high-dimensional data
    Lu, Yanping
    Xu, Suping
    Gao, Xing
    International Review on Computers and Software, 2012, 7 (03): : 1004 - 1011
  • [4] Subspace clustering using affinity propagation
    Gan, Guojun
    Ng, Michael Kwolc-Po
    PATTERN RECOGNITION, 2015, 48 (04) : 1455 - 1464
  • [5] Clustering of fMRI Data Using Affinity Propagation
    Liu, Dazhong
    Lu, Wanxuan
    Zhong, Ning
    BRAIN INFORMATICS, BI 2010, 2010, 6334 : 399 - 406
  • [6] Robust Speaker Clustering Using Affinity Propagation
    Zhang, Xiang
    Lu, Ping
    Suo, Hongbin
    Zhao, Qingwei
    Yan, Yonghong
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (11): : 2739 - 2741
  • [7] Document clustering using Particle Swarm Optimization
    Cui, XH
    Potok, TE
    Palathingal, P
    2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 185 - 191
  • [8] Projected Clustering Using Particle Swarm Optimization
    Gajawada, Satish
    Toshniwal, Durga
    2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 360 - 364
  • [9] Data clustering using particle swarm optimization
    van der Merwe, D
    Engelbrecht, AP
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 215 - 220
  • [10] Image Clustering Using Particle Swarm Optimization
    Wong, Man To
    He, Xiangjian
    Yeh, Wei-Chang
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 262 - 268