Compact perturbations and factorizations of closed range operators

被引:0
|
作者
Serban, Ioana [1 ]
Turcu, Flavius [1 ]
机构
[1] Univ Bordeaux 1, LAPS 351, F-33400 Talence, France
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2006年 / 72卷 / 1-2期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown that if A and B are closed range operators in a Hilbert space for which the equation B=XA has at least one solution, then the compactness of A-B is equivalent to the existence of a solution X such that X-I is compact. This result has several consequences on the description of the compact perturbations of particular classes of operators.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 50 条
  • [1] COMPACT AND INESSENTIAL PERTURBATIONS OF OPERATORS WITH CLOSED RANGE
    SAKSMAN, E
    TYLLI, HO
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 17 (03) : 404 - 416
  • [2] COMPACT PERTURBATIONS OF OPERATORS
    ANDERSON, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (01): : 247 - 250
  • [3] Compact perturbations of p-adic operators with finite codimensional range
    Vega, S
    P-ADIC FUNCTIONAL ANALYSIS, PROCEEDINGS, 2001, 222 : 301 - 307
  • [4] Compact and Finite Rank Perturbations of Closed Linear Operators and Relations in Hilbert Spaces
    Azizov, Tomas Ya.
    Behrndt, Jussi
    Jonas, Peter
    Trunk, Carsten
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (02) : 151 - 163
  • [5] Compact and Finite Rank Perturbations of Closed Linear Operators and Relations in Hilbert Spaces
    Tomas Ya. Azizov
    Jussi Behrndt
    Peter Jonas
    Carsten Trunk
    Integral Equations and Operator Theory, 2009, 63 : 151 - 163
  • [6] Perturbations on polynomially compact operators
    Souilah, Khalid
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (03): : 735 - 746
  • [7] COMPACT PERTURBATIONS OF SEMINORMAL OPERATORS
    PEARCY, C
    SALINAS, N
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 22 (08) : 789 - 793
  • [8] SPECTRA OF COMPACT PERTURBATIONS OF OPERATORS
    APOSTOL, C
    PEARCY, C
    SALINAS, N
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (02) : 345 - 350
  • [9] Compact perturbations of Hankel operators
    Chen, XM
    Guo, KY
    Izuchi, K
    Zheng, DC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 578 : 1 - 48
  • [10] DECOMPOSABILITY OF COMPACT PERTURBATIONS OF OPERATORS
    RADJABALIPOUR, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (01) : 159 - 164