MULTIPHOTON IONIZATION OF MOLECULES - A COMPARISON BETWEEN FEMTOSECOND AND NANOSECOND LASER-PULSE IONIZATION EFFICIENCY

被引:37
|
作者
AICHER, KP [1 ]
WILHELM, U [1 ]
GROTEMEYER, J [1 ]
机构
[1] UNIV WURZBURG,INST PHYS CHEM,D-97070 WURZBURG,GERMANY
关键词
D O I
10.1016/1044-0305(95)00551-X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiphoton ionization mass spectra of nonvolatile molecules laser desorbed into a supersonic beam are recorded. It is shown by indirect measurements that the laser desorption of neutrals is not mass limited, but lead to the formation of neutrals with intensities large enough for intense signals. To investigate the efficiency of the multiphoton ionization process with varying laser pulse durations, simultaneous laser pulses of 500 fs and 5 ns or 100 fs and 5 ns have been applied to the neutral beam. The energies of both femtosecond and nanosecond laser pulses are held in a comparable magnitude, and thus produce, in the resulting ion intensity, very large differences up to 4 orders of magnitude. For larger evaporated molecules (> 500 u) the ionization efficiency from nanosecond laser pulses drops significantly in comparison to femtosecond laser pulse excitation. A variety of possible reasons for the different ionization and dissociation behavior in femtosecond and nanosecond laser pulse excitations are discussed in this paper. It is rationalized that even with very short laser pulses and large molecules the ''ladder switching model'' for ionization and fragmentation is valid.
引用
收藏
页码:1059 / 1068
页数:10
相关论文
共 50 条