A BAUER-FIKE THEOREM FOR THE JOINT SPECTRUM OF COMMUTING MATRICES

被引:9
|
作者
PRYDE, AJ [1 ]
机构
[1] UNIV TORONTO,TORONTO M5S 1A1,ONTARIO,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0024-3795(92)90430-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A = (A1,...,A(m)) and B = (B1,...,B(m)) be m-tuples of commuting n by n self-adjoint matrices. We obtain a number epsilon = \\Cliff(A - B)\\ such that within a distance epsilon of each joint eigenvalue of A there is a joint eigenvalue of B. The Clifford operator Cliff(A - B) of A - B can be represented by a square matrix of size 2(m)n and is defined using Clifford algebras. When m = 1, \\Cliff(A - B)\\ = \\A - B\\, the operator bound norm of A - B. Similar results are obtained for arbitrary commuting matrices A(j) and simultaneously diagonalizable matrices B(j).
引用
收藏
页码:221 / 230
页数:10
相关论文
共 49 条