ANTIRED BONDS DISTRIBUTION LAW IN 3D PERCOLATION

被引:3
|
作者
GOUYET, JF
机构
[1] Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique
来源
PHYSICA A | 1992年 / 191卷 / 1-4期
关键词
D O I
10.1016/0378-4371(92)90542-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Combining two independent approaches the power law structure of the anti-red bonds distribution in d = 3 percolation can be derived. This result is important to understand the dynamical behaviour of fluctuating fronts during diffusion and invasion processes, but also in problems of fragmentation-aggregation of percolation clusters. In d = 2, it allows to calculate the fractal dimension of the hull, D(h) = 1 + 1/nu, a known result not easy to prove. In d > 2 dimensions, it gives an anti-red bonds equal to D(anti-red) = 2D - 1/nu - d.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 50 条
  • [1] CALCULATION OF PERCOLATION CONDUCTIVITY IN 3D
    SARYCHEV, AK
    VINOGRADOFF, AP
    KARIMOV, AM
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (05): : L105 - L108
  • [2] Numerical simulation of percolation law of 3D porous and fractured double-medium
    Lu Zhao-xing
    Feng Zeng-chao
    Zhao Yang-sheng
    Tan Li-ping
    ROCK AND SOIL MECHANICS, 2007, 28 : 291 - 294
  • [3] Numerical simulation of percolation law of 3D porous and fractured double-medium
    Lu, Zhao-Xing
    Feng, Zeng-Chao
    Zhao, Yang-Sheng
    Tan, Li-Ping
    Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (SUPPL.): : 291 - 294
  • [4] 3D Percolation Modeling for Connectivity and Permeability of Sandstone with Different Pore Distribution Characteristics
    Huang, Xudong
    Zhao, Jing
    Zhou, Zhiping
    Yang, Dong
    Wang, Guoying
    Kang, Zhiqin
    NATURAL RESOURCES RESEARCH, 2024, 33 (01) : 191 - 212
  • [5] 3D Percolation Modeling for Connectivity and Permeability of Sandstone with Different Pore Distribution Characteristics
    Xudong Huang
    Jing Zhao
    Zhiping Zhou
    Dong Yang
    Guoying Wang
    Zhiqin Kang
    Natural Resources Research, 2024, 33 : 191 - 212
  • [6] ARE THERE LONG LINKS IN PERCOLATION BACKBONE IN 3D
    SARYCHEV, AK
    VINOGRADOV, AP
    GOLDENSHTEIN, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02): : L113 - L116
  • [7] Tricolor percolation and random paths in 3D
    Sheffield, Scott
    Yadin, Ariel
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 23
  • [8] REEXAMINATION OF 3D PERCOLATION-THRESHOLD ESTIMATES
    STAUFFER, D
    ZABOLITZKY, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17): : 3705 - 3706
  • [9] SURFACE AND EDGE EXPONENTS FOR THE SPREADING OF 3D PERCOLATION
    GRASSBERGER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (05): : L241 - L246
  • [10] RIGIDITY PERCOLATION IN DISORDERED 3D ROD SYSTEMS
    Heroy, Samuel
    Taylor, Dane
    Shi, Feng
    Forest, M. Gregory
    Mucha, Peter J.
    MULTISCALE MODELING & SIMULATION, 2022, 20 (01): : 250 - 281