Mapping landslide susceptibility and types using Random Forest

被引:183
|
作者
Taalab, Khaled [1 ]
Cheng, Tao [1 ]
Zhang, Yang [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, SpaceTimeLab, London, England
基金
英国工程与自然科学研究理事会;
关键词
Landslide susceptibility; landslide type; random forest;
D O I
10.1080/20964471.2018.1472392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Landslides are one of the most destructive natural hazards; they can drastically alter landscape morphology, destroy man-made structures, and endanger people's life. Landslide susceptibility maps (LSMs), which show the spatial likelihood of landslide occurrence, are crucial for environmental management, urban planning, and minimizing economic losses. To date, the majority of research into data mining LSM uses small-scale case studies focusing on a single type of landslide. This paper presents a data mining approach to producing LSM for a large, heterogeneous region that is susceptible to multiple types of landslides. Using a case study of Piedmont, Italy, a Random Forest algorithm is applied to produce both susceptibility maps and classification maps. These maps are combined to give a highly accurate (over 85% classification accuracy) LSM which contains a large amount of information and is easy to interpret. This novel method of mapping landslide susceptibility demonstrates the efficacy of Random Forest to produce highly accurate susceptibility maps for a large heterogeneous region without the need for multiple susceptibility assessments.
引用
收藏
页码:159 / 178
页数:20
相关论文
共 50 条
  • [1] Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization
    Zhou, Xinzhi
    Wen, Haijia
    Zhang, Yalan
    Xu, Jiahui
    Zhang, Wengang
    GEOSCIENCE FRONTIERS, 2021, 12 (05)
  • [2] Landslide Susceptibility Mapping of Chamoli (Uttarakhand) Using Random Forest Machine Learning Method
    Mittal, Amogh
    Gupta, Kunal
    Satyam, Neelima
    NATURAL GEO-DISASTERS AND RESILIENCY, CREST 2023, 2024, 445 : 207 - 217
  • [3] Consideration of spatial heterogeneity in landslide susceptibility mapping using geographical random forest model
    Quevedo, Renata Pacheco
    Maciel, Daniel Andrade
    Uehara, Tatiana Dias Tardelli
    Vojtek, Matej
    Renno, Camilo Daleles
    Pradhan, Biswajeet
    Vojtekova, Jana
    Quoc Bao Pham
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 8190 - 8213
  • [4] Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector
    Wang, Yue
    Wen, Haijia
    Sun, Deliang
    Li, Yuechen
    REMOTE SENSING, 2021, 13 (13)
  • [5] Landslide susceptibility mapping using hybrid random forest with Geo Detector and RFE for factor optimization
    Xinzhi Zhou
    Haijia Wen
    Yalan Zhang
    Jiahui Xu
    Wengang Zhang
    Geoscience Frontiers, 2021, 12 (05) : 361 - 379
  • [6] A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm
    Sun, Deliang
    Wen, Haijia
    Wang, Danzhou
    Xu, Jiahui
    GEOMORPHOLOGY, 2020, 362
  • [7] A new random forest method for landslide susceptibility mapping using hyperparameter optimization and grid search techniques
    Kanwar, M.
    Pokharel, B.
    Lim, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2025,
  • [8] Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing
    Zhang, Wengang
    He, Yuwei
    Wang, Luqi
    Liu, Songlin
    Meng, Xuanyu
    GEOLOGICAL JOURNAL, 2023, 58 (06) : 2372 - 2387
  • [9] Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea
    Kim, Jeong-Cheol
    Lee, Sunmin
    Jung, Hyung-Sup
    Lee, Saro
    GEOCARTO INTERNATIONAL, 2018, 33 (09) : 1000 - 1015
  • [10] Application of Bayesian Hyperparameter Optimized Random Forest and XGBoost Model for Landslide Susceptibility Mapping
    Wang, Shibao
    Zhuang, Jianqi
    Zheng, Jia
    Fan, Hongyu
    Kong, Jiaxu
    Zhan, Jiewei
    FRONTIERS IN EARTH SCIENCE, 2021, 9