It is shown how to modify the canonical light-front quantization of the (1 + 1)-dimensional sine-Gordon model such that the zero-mode problem of light-front quantization is avoided. The canonical sine-Gordon Lagrangian is replaced by an effective Lagrangian which does not lead to divergences as k+ = (k0 + k1)/square-root 2 --> 0. After canonically quantizing the effective Lagrangian, one obtains the effective light-front Hamiltonian which agrees with the naive light-front (LF) Hamiltonian, up to one additional renormalization. The spectrum of the effective LF Hamiltonian is determined using discrete light-cone quantization and agrees with results from equal-time quantization.
机构:
SERV PHYS THEOR SACLAY, LAB DIRECT SCI MATIERE COMMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCESERV PHYS THEOR SACLAY, LAB DIRECT SCI MATIERE COMMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCE
Babelon, O
Bernard, D
论文数: 0引用数: 0
h-index: 0
机构:
SERV PHYS THEOR SACLAY, LAB DIRECT SCI MATIERE COMMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCESERV PHYS THEOR SACLAY, LAB DIRECT SCI MATIERE COMMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCE
Bernard, D
Smirnov, FA
论文数: 0引用数: 0
h-index: 0
机构:
SERV PHYS THEOR SACLAY, LAB DIRECT SCI MATIERE COMMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCESERV PHYS THEOR SACLAY, LAB DIRECT SCI MATIERE COMMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCE
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Cheng, Xinyu
Li, Dong
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R ChinaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Li, Dong
Quan, Chaoyu
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China
Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R ChinaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Quan, Chaoyu
Yang, Wen
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Wuhan Inst Phys & Math, POB 71010, Wuhan 430071, Peoples R China
Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 430071, Peoples R ChinaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada