LIGHT-FRONT QUANTIZATION OF THE SINE-GORDON MODEL

被引:61
|
作者
BURKARDT, M [1 ]
机构
[1] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
来源
PHYSICAL REVIEW D | 1993年 / 47卷 / 10期
关键词
D O I
10.1103/PhysRevD.47.4628
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown how to modify the canonical light-front quantization of the (1 + 1)-dimensional sine-Gordon model such that the zero-mode problem of light-front quantization is avoided. The canonical sine-Gordon Lagrangian is replaced by an effective Lagrangian which does not lead to divergences as k+ = (k0 + k1)/square-root 2 --> 0. After canonically quantizing the effective Lagrangian, one obtains the effective light-front Hamiltonian which agrees with the naive light-front (LF) Hamiltonian, up to one additional renormalization. The spectrum of the effective LF Hamiltonian is determined using discrete light-cone quantization and agrees with results from equal-time quantization.
引用
收藏
页码:4628 / 4633
页数:6
相关论文
共 50 条
  • [1] Quantization of solitons and the restricted Sine-Gordon model
    Babelon, O
    Bernard, D
    Smirnov, FA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (02) : 319 - 354
  • [2] QUANTIZATION OF THE CONSERVATION-LAWS IN THE SUPERSYMMETRIC SINE-GORDON MODEL
    MARINUCCI, T
    SCIUTO, S
    NUCLEAR PHYSICS B, 1979, 156 (01) : 144 - 156
  • [3] The Dynamical Sine-Gordon Model
    Hairer, Martin
    Shen, Hao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (03) : 933 - 989
  • [4] Lattice sine-Gordon model
    Flamino, James
    Giedt, Joel
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [5] Chiral sine-Gordon model
    Yanagisawa, Takashi
    EPL, 2016, 113 (04)
  • [6] Noncommutative sine-Gordon model
    Lechtenfeld, O
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (5-6): : 500 - 505
  • [7] The Dynamical Sine-Gordon Model
    Martin Hairer
    Hao Shen
    Communications in Mathematical Physics, 2016, 341 : 933 - 989
  • [8] A DISCRETE SINE-GORDON MODEL
    DING, GH
    XU, BW
    ZHANG, YM
    PHYSICS LETTERS B, 1993, 317 (1-2) : 107 - 111
  • [9] Noncommutative sine-Gordon model
    Lechtenfeld, O
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (11) : 1351 - 1357
  • [10] On a Parabolic Sine-Gordon Model
    Cheng, Xinyu
    Li, Dong
    Quan, Chaoyu
    Yang, Wen
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (04): : 1068 - 1084