首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
THE MAXIMUM THEOREM AND THE EXISTENCE OF NASH EQUILIBRIUM OF (GENERALIZED) GAMES WITHOUT LOWER SEMICONTINUITIES
被引:25
|
作者
:
TIAN, GQ
论文数:
0
引用数:
0
h-index:
0
机构:
TEXAS A&M UNIV SYST,DEPT MATH,COLLEGE STN,TX 77843
TEXAS A&M UNIV SYST,DEPT MATH,COLLEGE STN,TX 77843
TIAN, GQ
[
1
]
ZHOU, JX
论文数:
0
引用数:
0
h-index:
0
机构:
TEXAS A&M UNIV SYST,DEPT MATH,COLLEGE STN,TX 77843
TEXAS A&M UNIV SYST,DEPT MATH,COLLEGE STN,TX 77843
ZHOU, JX
[
1
]
机构
:
[1]
TEXAS A&M UNIV SYST,DEPT MATH,COLLEGE STN,TX 77843
来源
:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
|
1992年
/ 166卷
/ 02期
关键词
:
D O I
:
10.1016/0022-247X(92)90302-T
中图分类号
:
O29 [应用数学];
学科分类号
:
070104 ;
摘要
:
In this paper we generalize Berge's Maximum Theorem to the case where the payoff (utility) functions and the feasible action correspondences are not lower semicontinuous. The condition we introduced is called the Feasible Path Transfer Lower Semicontinuity (in short, FPT l.s.c.). By applying our Maximum Theorem to game theory and economics, we are able to prove the existence of equilibrium for the generalized games (the so-called abstract economics) and Nash equilibrium for games where the payoff functions and the feasible strategy correspondences are not lower semicontinuous. Thus the existence theorems given in this paper generalize many existence theorems on Nash equilibrium and equilibrium for the generalized games in the literature. © 1992.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 50 条
[1]
Existence of Nash equilibria for generalized games without upper semicontinuity
Cubiotti P.
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Mathematics, University of Messina
Department of Mathematics, University of Messina
Cubiotti P.
International Journal of Game Theory,
1997,
26
(2)
: 267
-
273
[2]
Existence of Nash equilibria for generalized games without upper semicontinuity
Cubiotti, P
论文数:
0
引用数:
0
h-index:
0
Cubiotti, P
INTERNATIONAL JOURNAL OF GAME THEORY,
1997,
26
(02)
: 267
-
273
[3]
An existence theorem of equilibrium for generalized games in H-spaces
Hou, JC
论文数:
0
引用数:
0
h-index:
0
机构:
Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
Hou, JC
APPLIED MATHEMATICS LETTERS,
2003,
16
(01)
: 97
-
103
[4]
On the Existence of Nash Equilibrium in Bayesian Games
Carbonell-Nicolau, Oriol
论文数:
0
引用数:
0
h-index:
0
机构:
Rutgers State Univ, Dept Econ, New Brunswick, NJ 08901 USA
Rutgers State Univ, Dept Econ, New Brunswick, NJ 08901 USA
Carbonell-Nicolau, Oriol
McLean, Richard P.
论文数:
0
引用数:
0
h-index:
0
机构:
Rutgers State Univ, Dept Econ, New Brunswick, NJ 08901 USA
Rutgers State Univ, Dept Econ, New Brunswick, NJ 08901 USA
McLean, Richard P.
MATHEMATICS OF OPERATIONS RESEARCH,
2018,
43
(01)
: 100
-
129
[5]
On the existence of Nash equilibrium in discontinuous games
Rabia Nessah
论文数:
0
引用数:
0
h-index:
0
机构:
IESEG School of Management,Department of Economics
Rabia Nessah
Guoqiang Tian
论文数:
0
引用数:
0
h-index:
0
机构:
IESEG School of Management,Department of Economics
Guoqiang Tian
Economic Theory,
2016,
61
: 515
-
540
[6]
On the existence of Nash equilibrium in discontinuous games
Nessah, Rabia
论文数:
0
引用数:
0
h-index:
0
机构:
CNRS, LEM, UMR 9221, IESEG Sch Management, 3 Rue Digue, F-59000 Lille, France
CNRS, LEM, UMR 9221, IESEG Sch Management, 3 Rue Digue, F-59000 Lille, France
Nessah, Rabia
Tian, Guoqiang
论文数:
0
引用数:
0
h-index:
0
机构:
Texas A&M Univ, Dept Econ, College Stn, TX 77843 USA
CNRS, LEM, UMR 9221, IESEG Sch Management, 3 Rue Digue, F-59000 Lille, France
Tian, Guoqiang
ECONOMIC THEORY,
2016,
61
(03)
: 515
-
540
[7]
Equilibrium problems and generalized Nash games
Nasri, Mostafa
论文数:
0
引用数:
0
h-index:
0
机构:
Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
Nasri, Mostafa
Sosa, Wilfredo
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Nacl Ingn, Inst Matemat & Ciencias Afines, Lima, Peru
Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
Sosa, Wilfredo
OPTIMIZATION,
2011,
60
(8-9)
: 1161
-
1170
[8]
Generalized Quantum Games with Nash Equilibrium
LIU Xu-Feng Department of Mathematics
论文数:
0
引用数:
0
h-index:
0
LIU Xu-Feng Department of Mathematics
Communications in Theoretical Physics,
2004,
41
(04)
: 553
-
556
[9]
Generalized quantum games with Nash Equilibrium
Liu, XF
论文数:
0
引用数:
0
h-index:
0
机构:
Peking Univ, Dept Math, Beijing 100871, Peoples R China
Peking Univ, Dept Math, Beijing 100871, Peoples R China
Liu, XF
COMMUNICATIONS IN THEORETICAL PHYSICS,
2004,
41
(04)
: 553
-
556
[10]
A generalization of the Nash equilibrium theorem on bimatrix games
Gowda, MS
论文数:
0
引用数:
0
h-index:
0
Gowda, MS
Sznajder, R
论文数:
0
引用数:
0
h-index:
0
Sznajder, R
INTERNATIONAL JOURNAL OF GAME THEORY,
1996,
25
(01)
: 1
-
12
←
1
2
3
4
5
→