A Privacy Protection Model for Patient Data with Multiple Sensitive Attributes

被引:40
作者
Gal, Tamas S. [1 ,2 ]
Chen, Zhiyuan [1 ]
Gangopadhyay, Aryya [3 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Informat Syst, Baltimore, MD 21250 USA
[2] Kentucky Canc Registry, Lexington, KY 40504 USA
[3] Univ Maryland Baltimore Cty, Informat Syst, Baltimore, MD 21250 USA
关键词
data security; healthcare privacy issues; privacy protection;
D O I
10.4018/jisp.2008070103
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The identity of patients must be protected when patient data are shared. The two most commonly used models to protect identity of patients are L-diversity and K-anonymity. However, existing work mainly considers data sets with a single sensitive attribute, while patient data often contain multiple sensitive attributes (e.g., diagnosis and treatment). This article shows that although the K-anonymity model can be trivially extended to multiple sensitive attributes, the L-diversity model cannot. The reason is that achieving L-diversity for each individual sensitive attribute does not guarantee L-diversity over all sensitive attributes. We propose a new model that extends L-diversity and K-anonymity to multiple sensitive attributes and propose a practical method to implement this model. Experimental results demonstrate the effectiveness of our approach.
引用
收藏
页码:28 / 44
页数:17
相关论文
共 24 条
[1]  
Agrawal D., 2001, 20 ACM SIGMOD SIGACT
[2]  
Agrawal R., 2000, 2000 ACM SIGMOD C MA
[3]  
[Anonymous], 2006, 22 IEEE INT C DAT EN
[4]  
Bayardo RJ, 2005, PROC INT CONF DATA, P217
[5]  
EVFIMEVSKI A, 2002, 8 ACM SIGKDD INT C K
[6]  
Evfimevski A., 2003, 22 ACM SIGMOD SIGACT
[7]  
Federal Trade Commission, 2007, ID THEFT RES CTR FAC
[8]  
Gartner Inc, 2007, GARTN SAYS NUMB ID T
[9]  
Hintoglu A. A., 2005, IEEE INT C DAT MIN
[10]  
Kargupta H., 2003, IEEE INT C DAT MIN