三维Hall-magnetohydrodynamic方程的整体小解

被引:0
|
作者
于洋海 [1 ]
王慧 [1 ]
吴星 [2 ]
机构
[1] 安徽师范大学数学与统计学院
[2] 不详
关键词
Hall-magnetohydrodynamic方程; 整体小解;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
该文研究R3上的不可压缩的带霍尔效应的磁流体力学方程的Cauchy问题.假设初始速度的水平分量或水平分量的和及初始磁场的■范数充分小,该文证明了该方程存在整体光滑解,改进了Chae和Lee (J Differ Equ 2014,256:3835-3858)的结果.
引用
收藏
页码:586 / 594
页数:9
相关论文
共 18 条
  • [1] A class large solution of the 3D Hall-magnetohydrodynamic equations[J] Jinlu Li;Yanghai Yu;Weipeng Zhu Journal of Differential Equations 2020,
  • [2] Global well-posedness; BKM blow-up criteria and zero h limit for the 3D incompressible Hall-MHD equations[J] Renhui Wan;Yong Zhou Journal of Differential Equations 2019,
  • [3] Global Regularity of 2D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: Low Regularity Case[J] Xian Liao;Ping Zhang Communications on Pure and Applied Mathematics 2019,
  • [4] Global Well-Posedness for the 3D Incompressible Hall-Magnetohydrodynamic Equations with Fujita–Kato Type Initial Data[J] Renhui Wan;Yong Zhou Journal of Mathematical Fluid Mechanics 2019,
  • [5] Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces[J] Xing Wu;Yanghai Yu;Yanbin Tang Mediterranean Journal of Mathematics 2018,
  • [6] Global existence and asymptotic behavior for the 3D generalized Hall-MHD system[J] Xing Wu;Yanghai Yu;Yanbin Tang Nonlinear Analysis 2017,
  • [7] Low Regularity Well-Posedness for the 3D Generalized Hall-MHD System[J] Renhui Wan;Yong Zhou Acta Applicandae Mathematicae 2017,
  • [8] On regularity criteria for the 3D Hall-MHD equations in terms of the velocity[J] Fangyi He;Bashir Ahmad;Tasawar Hayat;Yong Zhou Nonlinear Analysis: Real World Applications 2016,
  • [9] Regularity criterion for the 3D Hall-magneto-hydrodynamics[J] Mimi Dai Journal of Differential Equations 2016,
  • [10] Regularity criteria for the incompressible Hall‐MHD system[J] J. Fan;Y. Fukumoto;G. Nakamura;Y. Zhou ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 2015,