凸体的曲率熵log-Minkowski不等式

被引:1
|
作者
曾春娜 [1 ]
王亚玲 [1 ]
马磊 [2 ]
机构
[1] 重庆师范大学数学科学学院
[2] 广东茂名幼儿师范专科学校
关键词
体积log-Minkowski不等式; 曲率熵log-Minkowski不等式; 膨胀位置; 锥体积测度唯一性;
D O I
暂无
中图分类号
O186.5 [积分几何];
学科分类号
摘要
本文获得R2中一般凸体的曲率熵log-Minkowski不等式,去掉对称性条件,并建立R2中凸体锥体积测度的唯一性、体积log-Minkowski不等式和曲率熵log-Minkowski不等式三者之间的等价性.
引用
收藏
页码:823 / 838
页数:16
相关论文
共 29 条
  • [1] The Minkowski problem in Gaussian probability space.[J].Huang Yong;Xi Dongmeng;Zhao Yiming.Advances in Mathematics.2021,
  • [2] Nonsymmetric extension of the Green–Osher inequality.[J].Yunlong Yang.Geometriae Dedicata.2019, 1
  • [3] The dual Minkowski problem for symmetric convex bodies.[J].Károly J. Böröczky;Erwin Lutwak;Deane Yang;Gaoyong Zhang;Yiming Zhao.Advances in Mathematics.2019,
  • [4] The log-Brunn-Minkowski inequality in $\mathbb {R}^3$.[J].Yunlong Yang;Deyan Zhang.Proceedings of the American Mathematical Society.2019, 10
  • [5] A New Affine Invariant Geometric Functional for Polytopes and Its Associated Affine Isoperimetric Inequalities.[J].Hu Jiaqi;Xiong Ge.International Mathematics Research Notices.2019, 12
  • [6] On the L p dual Minkowski problem.[J].Yong Huang;Yiming Zhao.Advances in Mathematics.2018,
  • [7] Existence of solutions to the even dual Minkowski problem.[J].Yiming Zhao.Journal of Differential Geometry.2018, 3
  • [8] Dar’s conjecture and the log–Brunn–Minkowski inequality.[J].Dongmeng Xi;Gangsong Leng.Journal of Differential Geometry.2016, 1
  • [9] A new proof of the Log-Brunn–Minkowski inequality.[J].Lei Ma.Geometriae Dedicata.2015, 1
  • [10] The logarithmic Minkowski problem for polytopes.[J].Guangxian Zhu.Advances in Mathematics.2014,