Data-driven polarimetric imaging: a review

被引:3
|
作者
Kui Yang [1 ]
Fei Liu [1 ]
Shiyang Liang [2 ]
Meng Xiang [1 ]
Pingli Han [1 ]
Jinpeng Liu [1 ]
Xue Dong [1 ]
Yi Wei [3 ]
Bingjian Wang [4 ]
Koichi Shimizu [2 ]
Xiaopeng Shao [1 ,5 ]
机构
[1] School of Optoelectronic Engineering, Xidian University
[2] Graduate School of Information, Production and Systems, Waseda University
[3] Department of Mechanical Engineering, Massachusetts Institute of Technology
[4] School of Physics, Xidian University
[5] Hangzhou Institute of Technology, Xidian University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.41 []; O436.3 [偏振与色散];
学科分类号
080203 ;
摘要
This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications. The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest. Polarization information is increasingly incorporated into convolutional neural networks(CNN) as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges. Therefore, this article briefly reviews recent developments in data-driven polarimetric imaging, including polarimetric descattering, 3D imaging, reflection removal, target detection, and biomedical imaging. Furthermore, we synthetically analyze the input,datasets, and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages. We also highlight the significance of data-driven polarimetric imaging in future research and development.
引用
收藏
页码:4 / 48
页数:45
相关论文
共 50 条
  • [1] Data-driven polarimetric approaches fuel computational imaging expansion
    Sylvain Gigan
    Opto-Electronic Advances, 2024, 7 (09) : 5 - 7
  • [2] Data-driven polarimetric approaches fuel computational imaging expansion
    Gigan, Sylvain
    OPTO-ELECTRONIC ADVANCES, 2024, 7 (09)
  • [3] A Data-Driven Polarimetric Calibration Method for Entomological Radar
    Hu, Cheng
    Li, Muyang
    Li, Weidong
    Wang, Rui
    Yu, Teng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Dynamic and Data-Driven Classification for Polarimetric SAR Images
    Uhlmann, S.
    Kiranyaz, S.
    Ince, T.
    Gabbouj, M.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [5] DATA-DRIVEN IMAGING IN ANISOTROPIC MEDIA
    Volker, Arno
    Hunter, Alan
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 31A AND 31B, 2012, 1430 : 753 - 760
  • [6] A Data-Driven Review of Soft Robotics
    Jumet, Barclay
    Bell, Marquise D.
    Sanchez, Vanessa
    Preston, Daniel J.
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (04)
  • [7] A data-driven bibliometric review on precision irrigation
    Violino, Simona
    Figorilli, Simone
    Ferrigno, Marianna
    Manganiello, Veronica
    Pallottino, Federico
    Costa, Corrado
    Menesatti, Paolo
    SMART AGRICULTURAL TECHNOLOGY, 2023, 5
  • [8] A Review of Data-Driven Building Energy Prediction
    Liu, Huiheng
    Liang, Jinrui
    Liu, Yanchen
    Wu, Huijun
    BUILDINGS, 2023, 13 (02)
  • [9] A Review of Data-Driven Prognostics in Power Electronics
    Kabir, Ahsanul
    Bailey, Christopher
    Lu, Hua
    Stoyanov, Stoyan
    2012 35TH INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY (ISSE 2012): POWER ELECTRONICS, 2012, : 189 - 192
  • [10] 2022 Review of Data-Driven Plasma Science
    Anirudh, Rushil
    Archibald, Rick
    Asif, M. Salman
    Becker, Markus M.
    Benkadda, Sadruddin
    Bremer, Peer-Timo
    Bude, Rick H. S.
    Chang, C. S.
    Chen, Lei
    Churchill, R. M.
    Citrin, Jonathan
    Gaffney, Jim A.
    Gainaru, Ana
    Gekelman, Walter
    Gibbs, Tom
    Hamaguchi, Satoshi
    Hill, Christian
    Humbird, Kelli
    Jalas, Soeren
    Kawaguchi, Satoru
    Kim, Gon-Ho
    Kirchen, Manuel
    Klasky, Scott
    Kline, John L.
    Krushelnick, Karl
    Kustowski, Bogdan
    Lapenta, Giovanni
    Li, Wenting
    Ma, Tammy
    Mason, Nigel J.
    Mesbah, Ali
    Michoski, Craig
    Munson, Todd
    Murakami, Izumi
    Najm, Habib N.
    Olofsson, K. Erik J.
    Park, Seolhye
    Peterson, J. Luc
    Probst, Michael
    Pugmire, David
    Sammuli, Brian
    Sawlani, Kapil
    Scheinker, Alexander
    Schissel, David P.
    Shalloo, Rob J.
    Shinagawa, Jun
    Seong, Jaegu
    Spears, Brian K.
    Tennyson, Jonathan
    Thiagarajan, Jayaraman
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (07) : 1750 - 1838