Unmanned aerial vehicles(UAVs) are recognized as effective means for delivering emergency communication services when terrestrial infrastructures are unavailable. This paper investigates a multiUAV-assisted communication system, where we jointly optimize UAVs’ trajectories, user association, and ground users(GUs)’ transmit power to maximize a defined fairness-weighted throughput metric. Owing to the dynamic nature of UAVs, this problem has to be solved in real time. However, the problem’s non-convex and combinatorial attributes pose challenges for conventional optimization-based algorithms, particularly in scenarios without central controllers. To address this issue, we propose a multi-agent deep reinforcement learning(MADRL) approach to provide distributed and online solutions. In contrast to previous MADRLbased methods considering only UAV agents, we model UAVs and GUs as heterogeneous agents sharing a common objective. Specifically, UAVs are tasked with optimizing their trajectories, while GUs are responsible for selecting a UAV for association and determining a transmit power level. To learn policies for these heterogeneous agents, we design a heterogeneous coordinated QMIX(HC-QMIX) algorithm to train local Q-networks in a centralized manner. With these well-trained local Q-networks, UAVs and GUs can make individual decisions based on their local observations. Extensive simulation results demonstrate that the proposed algorithm outperforms state-of-the-art benchmarks in terms of total throughput and system fairness.