Kähler-Einstein surface and symmetric space

被引:0
|
作者
DaGuang Chen
Yi Hong
HongCang Yang
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] South China University of Technology,Department of Mathematics
[3] Chinese Academy of Sciences,Hua Loo
来源
Science China Mathematics | 2011年 / 54卷
关键词
Kähler-Einstein surfaces; holomorphic sectional curvature; Hermitian symmetric space; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kähler-Einstein surface is bi-holomorphic to a locally symmetric space.
引用
收藏
页码:2627 / 2634
页数:7
相关论文
共 50 条
  • [1] Khler-Einstein surface and symmetric space
    CHEN DaGuang HONG Yi YANG HongCang Department of Mathematical Sciences Tsinghua University Beijing ChinaDepartment of Mathematics South China University of Technology Guangzhou ChinaHua LooKeng Key Laboratory of Mathematics Chinese Academy of Sciences Beijing China
    Science China(Mathematics), 2011, 54 (12) : 2627 - 2634
  • [2] Khler-Einstein surface and symmetric space
    CHEN DaGuang1
    2Department of Mathematics
    3Hua Loo-Keng Key Laboratory of Mathematics
    Science China Mathematics, 2011, (12) : 2627 - 2634
  • [3] Rotationally symmetric pseudo-Kähler-Einstein metrics
    Xiaojuan Duan
    Jian Zhou
    Frontiers of Mathematics in China, 2011, 6 : 391 - 410
  • [4] Convergence of Kähler-Einstein orbifolds
    Natasa Sesum
    The Journal of Geometric Analysis, 2004, 14 : 171 - 184
  • [5] The Khler-Einstein metric for some Hartogs domains over symmetric domains
    ROOS Guy
    Science in China(Series A:Mathematics), 2006, (09) : 1175 - 1210
  • [6] The Kähler-Einstein metric for some Hartogs domains over symmetric domains
    An Wang
    Weiping Yin
    Liyou Zhang
    Guy Roos
    Science in China Series A: Mathematics, 2006, 49 : 1175 - 1210
  • [7] Kähler-Einstein metrics and projective embeddings
    Dominique Hulin
    The Journal of Geometric Analysis, 2000, 10 (3): : 525 - 528
  • [8] HIGHER REGULARITY FOR SINGULAR KÄHLER-EINSTEIN METRICS
    Chiu, Shih-Kai
    Szekelyhidi, Gabor
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (18) : 3521 - 3558
  • [9] Strict positivity of Kähler-Einstein currents
    Guedj, Vincent
    Guenancia, Henri
    Zeriahi, Ahmed
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [10] Kähler-Einstein metrics of cohomogeneity one
    Andrew Dancer
    McKenzie Y. Wang
    Mathematische Annalen, 1998, 312 : 503 - 526