Local classification of stable geometric solutions of systems of quasilinear first-order PDE

被引:0
|
作者
Bing Li
Yangcheng Li
机构
[1] Changsha University of Electric Power,Department of Mathematics
[2] Central South University,Department of Applied Mathematics
来源
关键词
versal deformation; system of quasilinear first order PDE; stable local geometric solution; classification;
D O I
10.1360/02ys9127
中图分类号
学科分类号
摘要
Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type Σ1 in singularity theory.
引用
收藏
页码:1163 / 1170
页数:7
相关论文
共 50 条
  • [1] Local classification of stable geometric solutions of systems of quasilinear first-order PDE
    Li, Bing
    Li, Yangcheng
    Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (09): : 1163 - 1170
  • [2] Local classification of stable geometric solutions of systems of quasilinear first-order PDE
    李兵
    李养成
    Science China Mathematics, 2002, (09) : 1163 - 1170
  • [3] Local classification of stable geometric solutions of systems of quasilinear first-order PDE
    Li, B
    Li, YC
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2002, 45 (09): : 1163 - 1170
  • [4] Multimode Solutions of First-Order Elliptic Quasilinear Systems
    Grundland, A. M.
    Lamothe, V.
    ACTA APPLICANDAE MATHEMATICAE, 2015, 138 (01) : 81 - 113
  • [5] Multimode Solutions of First-Order Elliptic Quasilinear Systems
    A. M. Grundland
    V. Lamothe
    Acta Applicandae Mathematicae, 2015, 138 : 81 - 113
  • [6] Solutions of First-Order Quasilinear Systems Expressed in Riemann Invariants
    A. M. Grundland
    V. Lamothe
    Acta Applicandae Mathematicae, 2015, 140 : 197 - 224
  • [7] Solutions of First-Order Quasilinear Systems Expressed in Riemann Invariants
    Grundland, A. M.
    Lamothe, V.
    ACTA APPLICANDAE MATHEMATICAE, 2015, 140 (01) : 197 - 224
  • [8] Direct Predictive Boundary Control of a First-order Quasilinear Hyperbolic PDE
    Strecker, Timm
    Aamo, Ole Morten
    Cantoni, Michael
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 4984 - 4989
  • [9] Double-wave solutions to quasilinear hyperbolic systems of first-order PDEs
    Curro, C.
    Manganaro, N.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [10] Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems
    Liu, Cunming
    Qu, Peng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (01): : 34 - 68