Hopf bifurcation of reaction-diffusion and Navier-Stokes equations under discretization

被引:0
|
作者
Christian Lubich
Alexander Ostermann
机构
[1] Mathematisches Institut,
[2] Universität Tübingen,undefined
[3] Auf der Morgenstelle 10,undefined
[4] D-72076 Tübingen,undefined
[5] Germany; e-mail: lubich@na.uni-tuebingen.de ,undefined
[6] Institut für Mathematik und Geometrie,undefined
[7] Universität Innsbruck,undefined
[8] Technikerstraße 13,undefined
[9] A-6020 Innsbruck,undefined
[10] Austria; e-mail: alex@mat1.uibk.ac.at ,undefined
来源
Numerische Mathematik | 1998年 / 81卷
关键词
Mathematics Subject Classification (1991):65M12, 65M15, 35B32, 58F14;
D O I
暂无
中图分类号
学科分类号
摘要
The long-time behaviour of numerical approximations to the solutions of a semilinear parabolic equation undergoing a Hopf bifurcation is studied in this paper. The framework includes reaction-diffusion and incompressible Navier-Stokes equations. It is shown that the phase portrait of a supercritical Hopf bifurcation is correctly represented by Runge-Kutta time discretization. In particular, the bifurcation point and the Hopf orbits are approximated with higher order. A basic tool in the analysis is the reduction of the dynamics to a two-dimensional center manifold. A large portion of the paper is therefore concerned with studying center manifolds of the discretization.
引用
收藏
页码:53 / 84
页数:31
相关论文
共 50 条