AI-Assisted Annotator Using Reinforcement Learning

被引:0
|
作者
Saripalli V.R. [1 ]
Pati D. [1 ]
Potter M. [1 ]
Avinash G. [1 ]
Anderson C.W. [2 ]
机构
[1] GE Healthcare, 2623 Camino Ramon, San Ramon, 94583, CA
[2] Colorado State University, Fort Collins, 80523, CO
关键词
Annotation; False alarms; Reinforcement learning;
D O I
10.1007/s42979-020-00356-z
中图分类号
学科分类号
摘要
Machine learning in the healthcare domain is often hindered by data which are both noisy and lacking reliable ground truth labeling. Moreover, the cost of cleaning and annotating this data is significant since, unlike other data domains, medical data annotation requires the work of skilled medical professionals. In this work, we introduced the use of reinforcement learning to mimic the decision-making process of annotators for medical events allowing automation of annotation and labeling. Our reinforcement agent learns to annotate health monitor alarm data based on annotations done by an expert. We demonstrate the efficacy of our implementation on ICU critical alarm data sets. We evaluate our algorithm against standard supervised machine learning and deep learning methods. Compared to SVM and LSTM methods, our method achieves high sensitivity that is critical for alarm data; exhibits better generalization across mixed downsampling; and preserves comparable model performance. © 2020, Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [1] AutoTG: Reinforcement Learning-Based Symbolic Optimization for AI-Assisted Power Converter Design
    Silva, Felipe Leno da
    Glatt, Ruben
    Su, Wencong
    Bui, Van-Hai
    Chang, Fangyuan
    Chaturvedi, Shivam
    Wang, Mengqi
    Murphey, Yi Lu
    Huang, Can
    Xue, Lingxiao
    Zeng, Rong
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, 2024, 5 (02): : 680 - 689
  • [2] AI-assisted endoscopy
    不详
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2024, 149 (05) : 203 - 203
  • [3] AI-ASSISTED WARFARE
    Michel, Arthur Holland
    MIT TECHNOLOGY REVIEW, 2023, 126 (05): : 46 - 53
  • [4] LingoLand: An AI-Assisted Immersive Game for Language Learning
    Seow, Olivia
    ADJUNCT PROCEEDINGS OF THE 36TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE & TECHNOLOGY, UIST 2023 ADJUNCT, 2023,
  • [5] AI-Assisted Personalized Learning System for Teaching Chassis Principles
    Liao, Chin-Wen
    Lin, En-Shiuh
    Chen, Bo-Siang
    Wang, Cheng-Chia
    Wang, I-Chi
    Ho, Wei-Sho
    Ko, Yu-Yuan
    Chu, Tzu-Hsin
    Chang, Kuang-Min
    Luo, Wen-Jun
    International Journal of Engineering Education, 2025, 41 (02) : 548 - 560
  • [6] AI-assisted Boolean search
    Kurian, N.
    Cherian, J. M.
    Cherian, K. K.
    Varghese, K. G.
    BRITISH DENTAL JOURNAL, 2023, 235 (06) : 363 - 363
  • [7] AI-assisted dental care
    S. Patil
    S. Bhandi
    K. H. Awan
    F. Licari
    British Dental Journal, 2023, 234 : 555 - 556
  • [8] AI-assisted RT in LMICs
    Rasmussen, Mathis Ersted
    LANCET ONCOLOGY, 2023, 24 (06): : E244 - E244
  • [9] AI-assisted dental care
    Patil, S.
    Bhandi, S.
    Awan, K. H.
    Licari, F.
    BRITISH DENTAL JOURNAL, 2023, 234 (08) : 555 - 556
  • [10] AI-Assisted Human Teamwork
    Seo, Sangwon
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23415 - 23416