Design and Performance Analysis of Advanced MOSFET Structures

被引:0
|
作者
Marupaka Aditya
K. Srinivasa Rao
机构
[1] Koneru Lakshmaiah Education Foundation (Deemed to be University),Department of Electronics and Communication Engineering, MEMS Research Center
关键词
Complementary metal oxide semiconductor; Scaling; Multigate transistors; Junctionless transistors; Double gate transistors;
D O I
暂无
中图分类号
学科分类号
摘要
With respect to semiconductor industry, Complementary metal oxide semiconductor is considered to be successful because of integration in Integrated Circuits (ICs). As transistor size is shrinked exponentially, there is an exponential increase in number of transistors on a chip. This potential of increase in number of transistors on chip is achieved by scaling of Metal oxide semiconductor field effect transistor (MOSFET). With scaling, the characteristics of devices are also degraded. Several advanced MOSFETs like Multigate transistors (Double gate, triple gate, Gate all around), Junctionless transistors and Tunnel FETs are proposed recently. These are thought to aid Moore’s law and scaling of transistors to next decade and continue improvement in computer performance. This paper presents 2D ATLAS simulation of high-K gate dielectric engineered Double gate metal oxide field effect transistor (DGMOSFET). The performance parameters for bulk MOSFET is poor as the transistors on integrated circuit is increasing. Therefore various challenges are invoked in nanometer scale. The new devices to control these challenges is needed and thus a non planar multigate structures are emerged. These structures have shown considerably better performance in nanometer scale. The surface potential for different dielectric materials for a fixed channel length and variation of surface potential for different channel lengths in a fixed dielectric materials is shown. In similar way the electron concentration along the length of channel is shown. The IDS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{DS}$$\end{document} versus VDS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{DS}$$\end{document} graphs are also shown for different materials. The electrical characteristics of proposed device is shown in this paper. The proposed device has shown very good ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{ON}$$\end{document}, IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{OFF}$$\end{document} and ION/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{ON}/I_{OFF}$$\end{document} ratio.
引用
收藏
页码:219 / 227
页数:8
相关论文
共 50 条
  • [1] Design and Performance Analysis of Advanced MOSFET Structures
    Aditya, Marupaka
    Rao, K. Srinivasa
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2022, 23 (03) : 219 - 227
  • [2] A comparative study of advanced MOSFET structures
    Wann, CH
    Tu, R
    Yu, B
    Hu, CM
    Noda, K
    Tanaka, T
    Yoshida, M
    Hui, K
    1996 SYMPOSIUM ON VLSI TECHNOLOGY: DIGEST OF TECHNICAL PAPERS, 1996, : 32 - 33
  • [3] The advanced compact MOSFET (ACM) model for circuit analysis and design
    Galup-Montoro, C.
    Schneider, M. C.
    Cunha, A. I. A.
    de Sousa, F. Rangel
    Klimach, Hamilton
    Siebel, O. Franca
    PROCEEDINGS OF THE IEEE 2007 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2007, : 519 - +
  • [4] Advanced analysis and design of steel structures
    Gardner, Leroy
    Silvestre, Nuno
    Chan, Tak-Ming
    Chung, Kwok-Fai
    STRUCTURES, 2019, 17 : 1 - 1
  • [5] Advanced analysis and design of spatial structures
    Liew, JYR
    Punniyakotty, NM
    Shanmugam, NE
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 1997, 42 (01) : 21 - 48
  • [6] Advanced analysis for performance-based design of steel structures exposed to fires
    Liew, JYR
    Tang, LK
    Choo, YS
    JOURNAL OF STRUCTURAL ENGINEERING, 2002, 128 (12) : 1584 - 1593
  • [7] A review on performance comparison of advanced MOSFET structures below 45 nm technology node
    Mendiratta, Namrata
    Tripathi, Suman Lata
    JOURNAL OF SEMICONDUCTORS, 2020, 41 (06)
  • [8] A review on performance comparison of advanced MOSFET structures below 45 nm technology node
    Namrata Mendiratta
    Suman Lata Tripathi
    Journal of Semiconductors, 2020, (06) : 23 - 32
  • [9] A review on performance comparison of advanced MOSFET structures below 45 nm technology node
    Namrata Mendiratta
    Suman Lata Tripathi
    Journal of Semiconductors, 2020, 41 (06) : 23 - 32
  • [10] Advanced Inelastic analysis for the design of tubular structures
    Liew, JYR
    Tang, LK
    Choo, YS
    TUBULAR STRUCTURES VIII, 1998, : 465 - 472