Geometry and algebra of real forms of complex curves

被引:0
|
作者
S.M. Natanzon
机构
[1] Moscow State University Korp. A,
[2] Leninske Gory,undefined
[3] 11899 Moscow,undefined
[4] Russia ,undefined
[5] Independent University of Moscow,undefined
[6] Bolshoi Vlasevsky Pereulok,undefined
[7] 11 Moscow,undefined
[8] Russia (e-mail: natanzon@mccme.ru) ,undefined
来源
Mathematische Zeitschrift | 2003年 / 243卷
关键词
Mathematics Subject Classification: 14H35, 14E09, 30F50, 14P25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Y be a complex algebraic curve and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[Y]=\{X_1,...,X_n\}$\end{document} be the set of all real algebraic curves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_i$\end{document} with complexification \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_i({\Bbb C})=Y$\end{document}, such that the real points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_i({\Bbb R})$\end{document} divide \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_i({\Bbb C})$\end{document}. We find all such families [Y]. According to Harnak theorem a number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert X_i\vert$\end{document} of connected components of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_i({\Bbb R})$\end{document} satisfies by the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert X_i\vert\leqslant g+1$\end{document}, where g is the genus of Y. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum\vert X_i\vert \leqslant 2g-(n-9) 2^{n-3}-2\leqslant 2g+30$\end{document} and these estimates are exact.
引用
收藏
页码:391 / 407
页数:16
相关论文
共 50 条