For a bounded function σ defined on
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ [0, 1]\times \mathbb{T} $$\end{document}, let
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \{s^{(n)}_{k}\}^{n+1}_{k=1} $$\end{document}
be the set of singular values of the (n + 1) x (n + 1) matrix whose (j, k)-entries
are equal to
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \frac{1}{2\pi}\int^{2\pi}_{0} \sigma(\frac{k}{n},e^{i\theta})e^{-i(j-k)\theta}d\theta,\qquad j,k = 0, 1,...,n. $$\end{document}
These matrices can be thought of as variable-coefficient Toeplitz matrices or
generalized Toeplitz matrices. Matrices of the above form can be also thought
of as the discrete analogue of pseudodifferential operators. Under a certain
smoothness assumption on the function σ, we prove that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \sum_{k=1}^{n+1} f(s^{2}_{k})\quad = \quad c_{1}\cdot (n+1) + c_{2} + o(1)\qquad as \enskip n \rightarrow \infty, $$\end{document}
where the constant c1 and a part of c2 are shown to have explicit integral
representations. The other part of c2 turns out to have a resemblance to the
Toeplitz case. This asymptotic formula can be viewed as a generalization of
the classical theory on singular values of Toeplitz matrices.