Supercritical biharmonic equations with power-type nonlinearity

被引:0
|
作者
Alberto Ferrero
Hans-Christoph Grunau
Paschalis Karageorgis
机构
[1] Università di Milano-Bicocca,Dipartimento di Matematica
[2] Otto-von-Guericke-Universität,Fakultät für Mathematik
[3] Trinity College,School of Mathematics
来源
关键词
Supercritical biharmonic equation; Power-type nonlinearity; Singular solution; Oscillatory behavior; Boundedness; Extremal solution; 35J60; 35B40; 35J30; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
We study two different versions of a supercritical biharmonic equation with a power-type nonlinearity. First, we focus on the equation Δ2u = |u|p-1u over the whole space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}, where n > 4 and p > (n + 4)/(n − 4). Assuming that p < pc, where pc is a further critical exponent, we show that all regular radial solutions oscillate around an explicit singular radial solution. As it was already known, on the other hand, no such oscillations occur in the remaining case p ≥ pc. We also study the Dirichlet problem for the equation Δ2u = λ (1 + u)p over the unit ball in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}, where λ > 0 is an eigenvalue parameter, while n > 4 and p > (n + 4)/(n − 4) as before. When it comes to the extremal solution associated to this eigenvalue problem, we show that it is regular as long as p < pc. Finally, we show that a singular solution exists for some appropriate λ > 0.
引用
收藏
页码:171 / 185
页数:14
相关论文
共 50 条