Graph Neural Network for Context-Aware Recommendation

被引:0
|
作者
Asma Sattar
Davide Bacciu
机构
[1] Università di Pisa,Dipartimento di Informatica
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Recommender Systems; Context-aware Recommendation; Deep learning for Graphs; Graph Neural Networks;
D O I
暂无
中图分类号
学科分类号
摘要
Recommendation problems are naturally tackled as a link prediction task in a bipartite graph between user and item nodes, labelled with rating information on edges. To provide personal recommendations and improve the performance of the recommender system, it is necessary to integrate side information along with user-item interactions. The integration of context is a key success factor in recommendation systems because it allows catering for user preferences and opinions, especially when this pertains to the circumstances surrounding the interaction between users and items. In this paper, we propose a context-aware Graph Convolutional Matrix Completion which captures structural information and integrates the user’s opinion on items along with the surrounding context on edges and static features of user and item nodes. Our graph encoder produces user and item representations with respect to context, features and opinion. The decoder takes the aggregated embeddings to predict the user-item score considering the surrounding context. We have evaluated the performance of our model on 14 five publicly available datasets and compared it with state-of-the-art algorithms. Throughout this we show how it can effectively integrate user opinion along with surrounding context to produce a final node representation which is aware of the favourite circumstances of the particular node.
引用
收藏
页码:5357 / 5376
页数:19
相关论文
共 50 条
  • [1] Graph Neural Network for Context-Aware Recommendation
    Sattar, Asma
    Bacciu, Davide
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5357 - 5376
  • [2] Neural Citation Network for Context-Aware Citation Recommendation
    Ebesu, Travis
    Fang, Yi
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 1093 - 1096
  • [3] Graph Neural Network and Context-Aware Based User Behavior Prediction and Recommendation System Research
    Gao, Qian
    Ma, Pengcheng
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020 (2020)
  • [4] Context-aware Session-based Recommendation with Graph Neural Networks
    Zhang, Zhihui
    Yu, Jianxiang
    Li, Xiang
    2023 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH, ICKG, 2023, : 35 - 44
  • [5] Global Context-Aware Graph Neural Networks for Session-based Recommendation
    Wang, Mingfeng
    Li, Jing
    Chang, Jun
    Liu, Donghua
    Zhang, Chenyan
    Huang, Xiaosai
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks
    Li, Dan
    Gao, Qian
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [7] Searching for experts in a context-aware recommendation network
    Carchiolo, Vincenza
    Longheu, Alessandro
    Malgeri, Michele
    Mangioni, Giuseppe
    COMPUTERS IN HUMAN BEHAVIOR, 2015, 51 : 1086 - 1091
  • [8] Pairwise Intent Graph Embedding Learning for Context-Aware Recommendation
    Liu, Dugang
    Wu, Yuhao
    Li, Weixin
    Zhang, Xiaolian
    Wang, Hao
    Yang, Qinjuan
    Ming, Zhong
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 588 - 598
  • [9] Enhancing Context-aware Recommendation via a Unified Graph Model
    Wu, Hao
    Liu, Xiaoxin
    Pei, Yijian
    Li, Bo
    2014 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI 2014), 2014, : 76 - 79
  • [10] Context-Aware Explainable Recommendation Based on Domain Knowledge Graph
    Syed, Muzamil Hussain
    Tran Quoc Bao Huy
    Chung, Sun-Tae
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (01)