Well-ordered spherical LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries

被引:0
|
作者
Gai Yang
Xianzhong Qin
Bo Wang
Feipeng Cai
Jian Gao
机构
[1] Shandong Academy of Sciences,Energy Research Institute, Qilu University of Technology
[2] Sichuan Changhong Electric Co.,New Energy Martials Laboratory
[3] Ltd.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nickel-rich layered oxide LiNi0.8Co0.1Mn0.1O2 suffers from severe structural instability and irreversible capacity loss during cycling due to cation disorder of Li+ and Ni2+. To solve this problem, the precursor Ni0.8Co0.1Mn0.1(OH)2 and well-ordered LiNi0.8Co0.1Mn0.1O2 cathode materials were successfully synthesized via controlled crystallization and high-temperature solid-state methods. The structure, morphology, and electrochemical performance of the precursor and LiNi0.8Co0.1Mn0.1O2 powders were investigated. The results show that the precursor Ni0.8Co0.1Mn0.1(OH)2 is made of sphere-like particles composed of needle-like primary crystal and LiNi0.8Co0.1Mn0.1O2 possesses a perfect layered structure with low Li/Ni disorder. Electrochemical data demonstrate that the material rate capabilities are 203.3, 187.7, 170.4, and 163 mA h/g from 0.1C to 10C, respectively. The capacity retention is 87.9% after 100 cycles at 1C, even the cut-off voltage was increased to 4.5 V. The high discharge capacity and outstanding cycling life can be attributed to the merits of a perfect crystal lattice with low Li/Ni disorder, fast lithium ion transport, and relatively low charge transfer resistance.
引用
收藏
页码:51 / 57
页数:6
相关论文
共 50 条
  • [1] Well-ordered spherical LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries
    Yang, Gai
    Qin, Xianzhong
    Wang, Bo
    Cai, Feipeng
    Gao, Jian
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (01) : 51 - 57
  • [2] Silver Nanocoating of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Li, Xintong
    Chang, Kai
    Abbas, Somia M.
    El-Tawil, Rasha S.
    Abdel-Ghany, Ashraf E.
    Hashem, Ahmed M.
    Wang, Hua
    Coughlin, Amanda L.
    Zhang, Shixiong
    Mauger, Alain
    Zhu, Likun
    Julien, Christian M.
    MICROMACHINES, 2023, 14 (05)
  • [3] Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
    Duc-Luong Vu
    Jae-won Lee
    Korean Journal of Chemical Engineering, 2016, 33 : 514 - 526
  • [4] Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
    Duc-Luong Vu
    Lee, Jae-won
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (02) : 514 - 526
  • [5] Mechanism of Capacity Fading in the LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Ahn, Yong-keon
    Jo, Yong Nam
    Cho, Woosuk
    Yu, Ji-Sang
    Kim, Ki Jae
    ENERGIES, 2019, 12 (09)
  • [6] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Zhu, Xiao-Feng
    Li, Xiu
    Liang, Tian-Quan
    Liu, Xin-Hua
    Ma, Jian-Min
    RARE METALS, 2023, 42 (02) : 387 - 398
  • [7] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 (02) : 387 - 398
  • [8] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 : 387 - 398
  • [9] Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries
    Sim, Seong-Ju
    Lee, Seung-Hwan
    Jin, Bong-Soo
    Kim, Hyun-Soo
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries
    Seong-Ju Sim
    Seung-Hwan Lee
    Bong-Soo Jin
    Hyun-Soo Kim
    Scientific Reports, 10