Energy Spectrum of the Valence Band in HgTe Quantum Wells on the Way from a Two- to Three-Dimensional Topological Insulator

被引:0
|
作者
G. M. Minkov
O. E. Rut
A. A. Sherstobitov
S. A. Dvoretsky
N. N. Mikhailov
V. Ya. Aleshkin
机构
[1] Ural Federal University,
[2] Mikheev Institute of Metal Physics,undefined
[3] Ural Branch,undefined
[4] Russian Academy of Sciences,undefined
[5] Rzhanov Institute of Semiconductor Physics,undefined
[6] Siberian Branch,undefined
[7] Russian Academy of Sciences,undefined
[8] Novosibirsk State University,undefined
[9] Institute for Physics of Microstructures,undefined
[10] Russian Academy of Sciences,undefined
来源
JETP Letters | 2023年 / 117卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The magnetic field and temperature dependences of longitudinal magnetoresistance and the Hall effect have been measured in order to determine the energy spectrum of the valence band in HgTe quantum wells with the width dQW = 20–200 nm. The comparison of hole densities determined from the period of Shubnikov–de Haas oscillations and the Hall effect shows that states at the top of the valence band are doubly degenerate in the entire dQW range, and the cyclotron mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{m}_{h}}$$\end{document} determined from the temperature dependence of the amplitude of Shubnikov–de Haas oscillation increases monotonically from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.2{{m}_{0}}$$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3{{m}_{0}}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{m}_{0}}$$\end{document} is the mass of the free electron) with increasing hole density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times {{10}^{{11}}}$$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6 \times {{10}^{{11}}}$$\end{document} cm–2. The determined dependence has been compared to theoretical dependences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{m}_{h}}(p,{{d}_{{{\text{QW}}}}})$$\end{document} calculated within the four-band kP model. These calculations predict an approximate stepwise increase in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{m}_{h}}$$\end{document} owing to the pairwise merging of side extrema with increasing hole density, which should be observed at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = (4{-} 4.5) \times {{10}^{{11}}}$$\end{document} and 4 × 1010 cm–2 for dQW = 20 and 200 nm, respectively. The experimental dependences are strongly inconsistent with this prediction. It has been shown that the inclusion of additional factors (electric field in the quantum well, strain) does not remove the contradiction between the experiment and theory. Consequently, it is doubtful that the mentioned kP calculations adequately describe the valence band at all dQW values.
引用
收藏
页码:916 / 922
页数:6
相关论文
共 50 条
  • [1] Energy Spectrum of the Valence Band in HgTe Quantum Wells on the Way from a Two- to Three-Dimensional Topological Insulator
    Minkov, G. M.
    Rut, O. E.
    Sherstobitov, A. A.
    Dvoretsky, S. A.
    Mikhailov, N. N.
    Aleshkin, V. Ya.
    JETP LETTERS, 2023, 117 (12) : 916 - 922
  • [2] Valence band energy spectrum of HgTe quantum wells with an inverted band structure
    Minkov, G. M.
    Aleshkin, V. Ya.
    Rut, O. E.
    Sherstobitov, A. A.
    Germanenko, A. V.
    Dvoretski, S. A.
    Mikhailov, N. N.
    PHYSICAL REVIEW B, 2017, 96 (03)
  • [3] Topological insulator: Both two- and three-dimensional
    He, Ke
    FRONTIERS OF PHYSICS, 2012, 7 (02) : 148 - 149
  • [4] Topological insulator: Both two- and three-dimensional
    Ke He
    Frontiers of Physics, 2012, 7 : 148 - 149
  • [5] Quantum capacitance of a three-dimensional topological insulator based on HgTe
    Kozlov, D. A.
    Bauer, D.
    Ziegler, J.
    Fischer, R.
    Savchenko, M. L.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    Weiss, D.
    LOW TEMPERATURE PHYSICS, 2017, 43 (04) : 430 - 436
  • [6] Band structure of a HgTe-based three-dimensional topological insulator
    Gospodaric, J.
    Dziom, V
    Shuvaev, A.
    Dobretsova, A. A.
    Mikhailov, N. N.
    Kvon, Z. D.
    Novik, E. G.
    Pimenov, A.
    PHYSICAL REVIEW B, 2020, 102 (11)
  • [7] Persistence of a Two-Dimensional Topological Insulator State in Wide HgTe Quantum Wells
    Olshanetsky, E. B.
    Kvon, Z. D.
    Gusev, G. M.
    Levin, A. D.
    Raichev, O. E.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    PHYSICAL REVIEW LETTERS, 2015, 114 (12)
  • [8] Transformation of energy spectrum and wave functions on the way from a 2D-to-3D topological insulator in HgTe quantum wells
    Minkov, G. M.
    Aleshkin, V. Ya.
    Rut, O. E.
    Sherstobitov, A. A.
    Dvoretski, S. A.
    Mikhailov, N. N.
    V. Germanenko, A.
    PHYSICAL REVIEW B, 2022, 106 (08)
  • [9] Quantum Hall effect and current distribution in the three-dimensional topological insulator HgTe
    Hartl, S.
    Freund, L.
    Kuehn, M.
    Ziegler, J.
    Richter, E.
    Himmler, W.
    Baerenfaenger, J.
    Kozlov, D. A.
    Mikhailov, N. N.
    Weis, J.
    Weiss, D.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [10] Quantum Hall effect and Landau levels in the three-dimensional topological insulator HgTe
    Ziegler, J.
    Kozlov, D. A.
    Mikhailov, N. N.
    Dvoretsky, S.
    Weiss, D.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):