Some Combinatorial and Analytical Identities

被引:0
|
作者
Mourad E. H. Ismail
Dennis Stanton
机构
[1] University of Central Florida,Department of Mathematics
[2] College of Science,Department of Mathematics
[3] King Saud University,School of Mathematics, College of Science and Engineering
[4] University of Minnesota,undefined
来源
Annals of Combinatorics | 2012年 / 16卷
关键词
05A19; 33D15; 05A30; 33D70; partitions; identities of Chen and Liu; Dilcher; Fu and Lascoux; Prodinger and Uchimura; Summation theorems; polynomial expansions; bibasic sums; Watson transformation; the Gasper identity; Lagrange type interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
We give new proofs and explain the origin of several combinatorial identities of Fu and Lascoux, Dilcher, Prodinger, Uchimura, and Chen and Liu. We use the theory of basic hypergeometric functions, and generalize these identities. We also exploit the theory of polynomial expansions in the Wilson and Askey-Wilson bases to derive new identities which are not in the hierarchy of basic hypergeometric series. We demonstrate that a Lagrange interpolation formula always leads to very-well-poised basic hypergeometric series. As applications we prove that the Watson transformation of a balanced \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_{4}\phi_{3}}$$\end{document} to a very-well-poised \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_{8}\phi_{7}}$$\end{document} is equivalent to the Rodrigues-type formula for the Askey-Wilson polynomials. By applying the Leibniz formula for the Askey-Wilson operator we also establish the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_{8}\phi_{7}}$$\end{document} summation theorem.
引用
收藏
页码:755 / 771
页数:16
相关论文
共 50 条