A Class of Prescribed Weingarten Curvature Equations for Locally Convex Hypersurfaces with Boundary in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document}

被引:0
|
作者
Yan He
Qiang Tu
Ni Xiang
机构
[1] Hubei University,Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2024年 / 34卷 / 2期
关键词
Prescribed Weingarten curvature; Strictly locally convex; The a priori estimates; Primary 35J96, 52A39; Secondary 53C40;
D O I
10.1007/s12220-023-01496-3
中图分类号
学科分类号
摘要
In this paper, we consider a class of prescribed Weingarten curvature equations for strictly locally convex hypersurfaces with boundary in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document}. Under some sufficient conditions, we obtain an existence result using a two-step continuity process based on the a priori estimates for solutions to prescribed Weingarten curvature equations.
引用
收藏
相关论文
共 50 条