Excessive breakdown of extracellular matrix by metalloproteinases (MMPs) occurs in many
pathological conditions, and thus inhibition of MMP activity might have therapeutic potential.
The methanolic extract and the identified compounds from the bark of Tristaniopsis
calobuxus Brongniart & Gris (Myrtaceae) were tested on the activity, production,
and gene expression of MMP-9. The extract produced a concentration-dependent inhibition
(50–95% at 10–50 mg/ml) of MMP-9 activity. The inhibitory activity was retained in the
ethyl acetatesoluble fraction (50–95% inhibition at 10–50 mg/ml) which also reduced the
release of MMP-9 by mouse peritoneal macrophages up to 80%. In the ethyl acetate-soluble
fraction, two active fractions, 5A and 5B were identified. HPLC-MS and NMR analyses of these
fractions indicated the presence of gallocatechin, ellagic acid, and its glycoside derivatives.
Since the absolute configuration of gallocatechin was not determined, in the next experiments
both (+)-gallocatechin (2R,3S) and (–)-gallocatechin (2S,3R) were tested, and
(–)-epigallocatechin (2R,3R) was included for comparison. 5A and 5B inhibited MMP-9 secretion,
an observation which correlated with the decrease of MMP-9 promoter activity and the downregulation
of mRNA levels. All compounds decreased MMP-9 mRNA levels and secretion. Ellagic acid,
(+)-gallocatechin and (–)-epigallocatechin, but not (–)-gallocatechin inhibited
promoter-driven transcription. Thus configuration at C2 (R) of the flavanol seem to be
critical for the interaction with the promoter.