Artificial intelligence for improving Nitrogen Dioxide forecasting of Abu Dhabi environment agency ground-based stations

被引:0
|
作者
Aamna AlShehhi
Roy Welsch
机构
[1] Khalifa University,Biomedical Engineering
[2] Massachusetts Institute of Technology,Sloan School of Management and Statistics
来源
关键词
Nitrogen Dioxide; Forecast; Artificial Intelligence; Deep Learning; Temporal Models; Transformer Model;
D O I
暂无
中图分类号
学科分类号
摘要
Nitrogen Dioxide (NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}) is a common air pollutant associated with several adverse health problems such as pediatric asthma, cardiovascular mortality,and respiratory mortality. Due to the urgent society’s need to reduce pollutant concentration, several scientific efforts have been allocated to understand pollutant patterns and predict pollutants’ future concentrations using machine learning and deep learning techniques. The latter techniques have recently gained much attention due it’s capability to tackle complex and challenging problems in computer vision, natural language processing, etc. In the NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} context, there is still a research gap in adopting those advanced methods to predict the concentration of pollutants. This study fills in the gap by comparing the performance of several state-of-the-art artificial intelligence models that haven’t been adopted in this context yet. The models were trained using time series cross-validation on a rolling base and tested across different periods using NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} data from 20 monitoring ground-based stations collected by Environment Agency- Abu Dhabi, United Arab Emirates. Using the seasonal Mann-Kendall trend test and Sen’s slope estimator, we further explored and investigated the pollutants trends across the different stations. This study is the first comprehensive study that reported the temporal characteristic of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} across seven environmental assessment points and compared the performance of the state-of-the-art deep learning models for predicting the pollutants’ future concentration. Our results reveal a difference in the pollutants concentrations level due to the geographic location of the different stations, with a statistically significant decrease in the NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} annual trend for the majority of the stations. Overall, NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} concentrations exhibit a similar daily and weekly pattern across the different stations, with an increase in the pollutants level during the early morning and the first working day. Comparing the state-of-the-art model performance transformer model demonstrate the superiority of ( MAE:0.04 (± 0.04),MSE:0.06 (± 0.04), RMSE:0.001 (± 0.01), R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}: 0.98 (± 0.05)), compared with LSTM (MAE:0.26 (± 0.19), MSE:0.31 (± 0.21), RMSE:0.14 (± 0.17), R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}: 0.56 (± 0.33)), InceptionTime (MAE: 0.19 (± 0.18), MSE: 0.22 (± 0.18), RMSE:0.08 (± 0.13), R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}:0.38 (± 1.35) ), ResNet (MAE:0.24 (± 0.16), MSE:0.28 (± 0.16), RMSE:0.11 (± 0.12), R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}:0.35 (± 1.19) ), XceptionTime (MAE:0.7 (± 0.55), MSE:0.79 (± 0.54), RMSE:0.91 (± 1.06), R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}: -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}4.83 (± 9.38) ), and MiniRocket (MAE:0.21 (± 0.07), MSE:0.26 (± 0.08), RMSE:0.07 (± 0.04), R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}: 0.65 (± 0.28) ) to tackle this challenge. The transformer model is a powerful model for improving the accurate forecast of the NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} levels and could strengthen the current monitoring system to control and manage the air quality in the region.
引用
收藏
相关论文
共 29 条
  • [1] Artificial intelligence for improving Nitrogen Dioxide forecasting of Abu Dhabi environment agency ground-based stations
    AlShehhi, Aamna
    Welsch, Roy
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [2] NITROGEN-DIOXIDE IN STRATOSPHERE AND TROPOSPHERE MEASURED BY GROUND-BASED ABSORPTION SPECTROSCOPY
    NOXON, JF
    SCIENCE, 1975, 189 (4202) : 547 - 549
  • [3] Remote and Ground-Based Sensing of Air Polluted by Nitrogen Dioxide in the Dnepropetrovsk Region (Ukraine)
    Kharytonov, Mykola M.
    Khlopova, Valentina M.
    Stankevich, Sergey A.
    Titarenko, Olga V.
    DISPOSAL OF DANGEROUS CHEMICALS IN URBAN AREAS AND MEGA CITIES: ROLE OF OXIDES AND ACIDS OF NITROGEN IN ATMOSPHERIC CHEMISTRY, 2013, : 291 - 298
  • [4] Seasonal and diurnal trends of surface refractivity in a tropical environment using ground-based automatic weather stations
    Najib Yusuf
    O. E. Ekpe
    Rabia S. Said
    B. G. Ayantunji
    A. E. Umahi
    Meteorology and Atmospheric Physics, 2020, 132 : 327 - 340
  • [5] Seasonal and diurnal trends of surface refractivity in a tropical environment using ground-based automatic weather stations
    Yusuf, Najib
    Ekpe, O. E.
    Said, Rabia S.
    Ayantunji, B. G.
    Umahi, A. E.
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2020, 132 (03) : 327 - 340
  • [6] Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations
    Bortoli, Daniele
    Silva, Ana Maria
    Costa, Maria Joao
    Domingues, Ana Filipa
    Giovanelli, Giorgio
    OPTICS EXPRESS, 2009, 17 (15): : 12944 - 12959
  • [7] Smart Police: Abu Dhabi Police initiative based on artificial intelligence and the Global Positioning System (GPS) to reduce violations by heavy vehicle drivers
    Al Shamsi, Ahmed Surour
    Davies, Amanda
    POLICING-A JOURNAL OF POLICY AND PRACTICE, 2023, 17
  • [8] Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations
    Tack, F.
    Hendrick, F.
    Goutail, F.
    Fayt, C.
    Merlaud, A.
    Pinardi, G.
    Hermans, C.
    Pommereau, J. -P.
    Van Roozendael, M.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (06) : 2417 - 2435
  • [9] GROUND-BASED ACTIVE REMOTE-SENSING OF THE NIGHT-TIME STRATOSPHERIC NITROGEN-DIOXIDE
    BUCCHIA, M
    MEGIE, G
    ANNALES GEOPHYSICAE, 1983, 1 (4-5): : 411 - 414
  • [10] Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area
    Kramer, Louisa J.
    Leigh, Roland J.
    Remedios, John J.
    Monks, Paul S.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D16)