Evaluation of visual relationship classifiers with partially annotated datasets

被引:0
|
作者
Roberto de Moura Estevão Filho
José Gabriel Rodríguez Carneiro Gomes
Leonardo Oliveira Nunes
机构
[1] Federal University of Rio de Janeiro,Department of Electrical Engineering
[2] Microsoft,undefined
来源
关键词
Deep convolutional neural networks; Visual relationships; Partial annotation; Computer vision; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we investigate neural networks as visual relationship classifiers for precision-constrained applications in partially annotated datasets. The classifier is a convolutional neural network, which we benchmark on three visual relationship datasets. We discuss the effect of partial annotation on precision and why precision-based metrics are not adequate in partial annotation cases. So far, this topic has not been explored in the context of visual relationship classification. We introduce a threshold tuning method that imposes a soft constraint on precision while being less sensitive to the degree of annotation than a regular precision-recall trade-off method. Performance can then be measured via recall of predictions computed with thresholds tuned by the proposed method. Our previously introduced negative sample mining method is now extended to partially annotated datasets (namely Visual Relationship Detection, VRD, and Visual Genome, VG), by sampling from unlabeled pairs instead of unrelated pairs. When thresholds are tuned using our method, negative sample mining improves recall from 24.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$24.1\%$$\end{document} to 30.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30.6\%$$\end{document} and from 36.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$36.7\%$$\end{document} to 41.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$41.3\%$$\end{document} for VRD and VG, respectively. The neural networks also maintain the ability to correctly classify between predicates. When considering only ground-truth relationships for threshold tuning, there is only a small decrease in recall (from 45.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45.1\%$$\end{document} to 43.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$43.8\%$$\end{document} in VRD, or from 60.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60.5\%$$\end{document} to 58.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$58.7\%$$\end{document} in VG) compared to when the neural networks are trained only on ground-truth samples.
引用
收藏
页码:18333 / 18352
页数:19
相关论文
共 50 条
  • [1] Evaluation of visual relationship classifiers with partially annotated datasets
    de Moura Estevao Filho, Roberto
    Rodriguez Carneiro Gomes, Jose Gabriel
    Oliveira Nunes, Leonardo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (06) : 18333 - 18352
  • [2] Named Entity Recognition for Partially Annotated Datasets
    Strobl, Michael
    Trabelsi, Amine
    Zaiane, Osmar
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2022), 2022, 13286 : 299 - 306
  • [3] Learning Fair Classifiers with Partially Annotated Group Labels
    Jung, Sangwon
    Chun, Sanghyuk
    Moon, Taesup
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10338 - 10347
  • [4] Active Evaluation of Classifiers on Large Datasets
    Katariya, Namit
    Iyer, Arun
    Sarawagi, Sunita
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 329 - 338
  • [5] Evaluation of Various Classifiers Performance on Biomedical Datasets
    Bursa, Miroslav
    Lhotska, Lenka
    2015 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2015,
  • [6] Performance Evaluation of Classifiers for Spam Detection with Benchmark Datasets
    Bindu, V
    Thomas, Ciza
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), 2016, : 17 - 22
  • [7] LEARNING TO JOINTLY SEGMENT THE LIVER, LESIONS AND VESSELS FROM PARTIALLY ANNOTATED DATASETS
    Ali, Omar
    Bone, Alexandre
    Rohe, Marc-Michel
    Vibert, Eric
    Vignon-Clementel, Irene
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3626 - 3630
  • [8] Mapping classifiers and datasets
    Yildiz, Olcay Taner
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3697 - 3702
  • [9] PERFORMANCE EVALUATION OF DECISION TREE CLASSIFIERS AND ADABOOST ON CANCER DATASETS
    Hasan, Abid
    2011 INTERNATIONAL CONFERENCE ON COMPUTER AND COMPUTATIONAL INTELLIGENCE (ICCCI 2011), 2012, : 155 - 160
  • [10] Comprehensive evaluation of twin SVM based classifiers on UCI datasets
    Tanveer, M.
    Gautam, C.
    Suganthan, P. N.
    APPLIED SOFT COMPUTING, 2019, 83