New true-triaxial rock strength criteria considering intrinsic material characteristics

被引:0
|
作者
Qiang Zhang
Cheng Li
Xiaowei Quan
Yanning Wang
Liyuan Yu
Binsong Jiang
机构
[1] China University of Mining and Technology,State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering
来源
Acta Mechanica Sinica | 2018年 / 34卷
关键词
Rock; Strength criterion; Meridian plane; Lode angle dependence; Convexity;
D O I
暂无
中图分类号
学科分类号
摘要
A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr–Coulomb (MC), Hoek–Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure Ic\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\mathrm{c}$$\end{document} corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of LMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{\mathrm{MN}}}$$\end{document}, LWW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{\mathrm{WW}}}$$\end{document}, and LYMH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{\mathrm{YMH}}}$$\end{document}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and LWW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{\mathrm{WW}}}$$\end{document} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.
引用
收藏
页码:130 / 142
页数:12
相关论文
共 50 条
  • [1] New true-triaxial rock strength criteria considering intrinsic material characteristics
    Zhang, Qiang
    Li, Cheng
    Quan, Xiaowei
    Wang, Yanning
    Yu, Liyuan
    Jiang, Binsong
    ACTA MECHANICA SINICA, 2018, 34 (01) : 130 - 142
  • [2] New true-triaxial rock strength criteria considering intrinsic material characteristics附视频
    Qiang Zhang
    Cheng Li
    Xiaowei Quan
    Yanning Wang
    Liyuan Yu
    Binsong Jiang
    Acta Mechanica Sinica, 2018, (01) : 130 - 142
  • [3] True-triaxial strength criteria for rock
    You, Mingqing
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2009, 46 (01) : 115 - 127
  • [4] Comparison of two true-triaxial strength criteria
    You, Mingqing
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2012, 54 : 114 - 124
  • [5] Deformability characteristics of a rock mass under true-triaxial stress compression
    Tiwari R.P.
    Rao K.S.
    Geotechnical & Geological Engineering, 2006, 24 (4): : 1039 - 1063
  • [6] True-triaxial experimental study on the rockburst characteristics of rock mass with a structural plane
    Li Y.
    Yuan L.
    Zhang Q.
    Wang S.
    Mu C.
    Zhang X.
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2024, 43 (01): : 120 - 132
  • [7] True-triaxial compressive strength of Maha Sarakham salt
    Sriapai, Tanapol
    Walsri, Chaowarin
    Fuenkajorn, Kittitep
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2013, 61 : 256 - 265
  • [8] Numerical simulation of the influence of small-scale defects on the true-triaxial strength of rock samples
    Senent, Salvador
    Jimenez, Rafael
    Reyes, Alexandra
    COMPUTERS AND GEOTECHNICS, 2013, 53 : 142 - 156
  • [9] True-triaxial test on unloading failure of jointed rock bridge
    Chen G.
    Liu D.
    Xu P.
    Qin C.
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (02): : 325 - 338
  • [10] Strength characteristics and energy evolution of cement stone under true-triaxial loading conditions
    Cao, Zhuokang
    Liu, Jiacun
    Xiao, Junjie
    Zhang, Jiaming
    Xu, Ying
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 432