Reducible problem for a class of almost-periodic non-linear Hamiltonian systems

被引:0
|
作者
Muhammad Afzal
Tariq Ismaeel
Muhammad Jamal
机构
[1] Ocean University of China,School of Mathematical Sciences
[2] Government College University,Department of Mathematics
[3] Pir Mehr Ali Shah Arid Agriculture University,Department of Mathematics and Statistics
关键词
Almost-periodic matrix; Reducibility; KAM iteration; Hamiltonian systems; Small divisors;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the reducibility of almost-periodic Hamiltonian systems with small perturbation near the equilibrium which is described by the following Hamiltonian system: dxdt=J[A+εQ(t,ε)]x+εg(t,ε)+h(x,t,ε).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{dx}{dt} = J \bigl[{A} +\varepsilon{Q}(t,\varepsilon) \bigr]x+ \varepsilon g(t,\varepsilon)+h(x,t,\varepsilon). $$\end{document} It is proved that, under some non-resonant conditions, non-degeneracy conditions, the suitable hypothesis of analyticity and for the sufficiently small ε, the system can be reduced to a constant coefficients system with an equilibrium by means of an almost-periodic symplectic transformation.
引用
收藏
相关论文
共 50 条