First- and Second-Order Integral Functionals of the Calculus of Variations which Exhibit the Lavrentiev Phenomenon

被引:0
|
作者
A. V. Sarychev
机构
[1] University of Aveiro,Department of Mathematics
关键词
Calculus of variations; regularity of minimizers; Lavrentiev phenomenon;
D O I
10.1023/A:1021829825516
中图分类号
学科分类号
摘要
We study the possible mechanisms of occurrence of the Lavrentiev phenomenon for the basic problem of the calculus of variations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{J}(x) = \int\limits_0^1 {\mathcal{L}(t,x(t),\dot x(t))dt \to \inf ,x(0) = x_0 ,x(1) = x1} $$ \end{document} when the infimum of the problem in the class of absolutely continuous functions W1,1[0, 1] is strictly less than the infimum of the same problem in the class of Lipshitzian functions W1,∞[0,1]. We suggest an approach to constructing new classes of integrands which exhibit the Lavrentiev phenomenon (Theorem 2.1).
引用
收藏
页码:565 / 588
页数:23
相关论文
共 50 条