Evolution of yttria nanoparticle ensembles

被引:15
|
作者
Fedorov P.P. [1 ]
Voronov V.V. [1 ]
Ivanov V.K. [4 ]
Konyushkin V.A. [1 ]
Kuznetsov S.V. [1 ]
Lavrishchev S.V. [2 ]
Nikolaev A.L. [3 ]
Osiko V.V. [1 ]
Tkachenko E.A. [1 ]
机构
[1] Research Center for Laser Materials and Technologies, Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991
[2] Research Center for Fiber Optics, Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991
[3] Faculty of Chemistry, Moscow State University
[4] Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991
来源
Nanotechnologies in Russia | 2010年 / 5卷 / 9-10期
关键词
38;
D O I
10.1134/S1995078010090065
中图分类号
学科分类号
摘要
The formation of Y2O3 nanoparticles in precipitation from acidic nitrate aqueous solutions, which was done by regulating pH at the expense of their titration with an ammonium hydroxide aqueous solution, was studied. The jellylike precipitates of a (Y2(OH)5NO3 · nH2O, n = 2, 3) precursor lose their volatile components under heating and drying in several stages. Their chemical decomposition terminates at 500-550°C with the formation of the cubic modification of yttria. Yttria particles inherit the platelike morphology of the particles of their precursor. Under further heating, Y2O3 particles lose their nonequilibrium shape due to the decomposition of plates into roundish nanoparticles with the relief of mechanical stresses. The isothermal exposure of nanoparticles formed in this way leads to their stepped agglomeration with a sequential increase in the size of particles by an order of magnitude. The sintering of Y2O3 powders with the formation of ceramics was investigated. © 2010 Pleiades Publishing, Ltd.
引用
收藏
页码:624 / 634
页数:10
相关论文
共 50 条
  • [1] Superparamagnetic nanoparticle ensembles
    Petracic, O.
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (05) : 569 - 578
  • [2] Nonextensivity in magnetic nanoparticle ensembles
    Binek, Ch.
    Polisetty, S.
    He, Xi
    Mukherjee, T.
    Rajesh, R.
    Redepenning, J.
    PHYSICAL REVIEW B, 2006, 74 (05):
  • [3] The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel
    Li, Wenxue
    Hao, Ting
    Gao, Rui
    Wang, Xianping
    Zhang, Tao
    Fang, Qianfeng
    Liu, Changsong
    POWDER TECHNOLOGY, 2017, 319 : 172 - 182
  • [4] Nanoparticle Ensembles in the Catalysis of Transformations of Halohydrocarbons
    V. M. Kozhevin
    T. N. Rostovshikova
    D. A. Yavsin
    M. A. Zabelin
    V. V. Smirnov
    S. A. Gurevich
    I. N. Yassievich
    Doklady Physical Chemistry, 2002, 387 : 324 - 327
  • [5] Nanoparticle ensembles in the catalysis of transformations of halohydrocarbons
    Kozhevin, VM
    Rostovshikova, TN
    Yavsin, DA
    Zabelin, MA
    Smirnov, VV
    Gurevich, SA
    Yassievich, IN
    DOKLADY PHYSICAL CHEMISTRY, 2002, 387 (4-6) : 324 - 327
  • [6] Nanoparticle ensembles - Nanocrystals come to order
    Brust, M
    NATURE MATERIALS, 2005, 4 (05) : 364 - 365
  • [7] Thermal magnetic noise spectra of nanoparticle ensembles
    Leliaert, J.
    Coene, A.
    Liebl, M.
    Eberbeck, D.
    Steinhoff, U.
    Wiekhorst, F.
    Fischer, B.
    Dupre, L.
    Van Waeyenberge, B.
    APPLIED PHYSICS LETTERS, 2015, 107 (22)
  • [8] Temperature dependent magnetorelaxometry of magnetic nanoparticle ensembles
    Arsalani, Soudabeh
    Radon, Patricia
    Eberbeck, Dietmar
    Koerber, Rainer
    Jaufenthaler, Aaron
    Baumgarten, Daniel
    Wiekhorst, Frank
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17):
  • [9] Clarifying stability, probability and population in nanoparticle ensembles
    Barnard, Amanda S.
    NANOSCALE, 2014, 6 (17) : 9983 - 9990
  • [10] ON THE TEMPORAL EVOLUTION OF FINITE ENSEMBLES
    ROTHMAYER, AP
    BLACK, DW
    MATHEMATIKA, 1992, 39 (78) : 291 - 318