Boundary regularity for elliptic systems under a natural growth condition

被引:1
|
作者
Lisa Beck
机构
[1] Scuola Normale Superiore di Pisa,
来源
关键词
Regularity theory for elliptic systems; Dimension reduction; Existence of regular boundary points; 35J45; 35J55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider weak solutions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in u_0 + W^{1,2}_0(\Omega,\mathbb{R}^N) \cap L^{\infty}(\Omega,\mathbb{R}^N)}$$\end{document} of second-order nonlinear elliptic systems of the type\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- {\rm div} \,a (\, \cdot \,, u, Du ) = b(\, \cdot \,,u,Du)\qquad \text{ in }\Omega$$\end{document}with an inhomogeneity satisfying a natural growth condition. In dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \in \{2,3,4\}}$$\end{document}, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}^{n-1}}$$\end{document}-almost every boundary point is a regular point for Du, provided that the boundary data and the coefficients are sufficiently smooth.
引用
收藏
页码:553 / 588
页数:35
相关论文
共 50 条