We consider weak solutions \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${u \in u_0 + W^{1,2}_0(\Omega,\mathbb{R}^N) \cap L^{\infty}(\Omega,\mathbb{R}^N)}$$\end{document} of second-order nonlinear elliptic systems of the type\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$- {\rm div} \,a (\, \cdot \,, u, Du ) = b(\, \cdot \,,u,Du)\qquad \text{ in }\Omega$$\end{document}with an inhomogeneity satisfying a natural growth condition. In dimensions \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n \in \{2,3,4\}}$$\end{document}, we show that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{H}^{n-1}}$$\end{document}-almost every boundary point is a regular point for Du, provided that the boundary data and the coefficients are sufficiently smooth.