Möbius and coboundary polynomials for matroids

被引:0
|
作者
Trygve Johnsen
Hugues Verdure
机构
[1] UiT the Arctic University of Norway,Dept. of Mathematics and Statistics
来源
关键词
Matroids; Möbius polynomials; Coboundary polynomials; Betti numbers; 05E45; 94B05; 05B35; 13F55;
D O I
暂无
中图分类号
学科分类号
摘要
We study how some coefficients of two-variable coboundary polynomials can be derived from Betti numbers of Stanley–Reisner rings. We also explain how the connection with these Stanley–Reisner rings forces the coefficients of the two-variable coboundary polynomials and Möbius polynomials to satisfy certain universal equations.
引用
收藏
页码:2163 / 2177
页数:14
相关论文
共 50 条
  • [1] Mobius and coboundary polynomials for matroids
    Johnsen, Trygve
    Verdure, Hugues
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (09) : 2163 - 2177
  • [2] The Möbius matroids
    Pivotto, Irene
    Royle, Gordon
    Advances in Applied Mathematics, 2021, 126
  • [3] Orthogonal polynomials and Möbius transformations
    R. S. Vieira
    V. Botta
    Computational and Applied Mathematics, 2021, 40
  • [4] The Möbius Transformation and Smirnov’s Inequality for Polynomials
    E. G. Ganenkova
    V. V. Starkov
    Mathematical Notes, 2019, 105 : 216 - 226
  • [5] Relations Between Mobius and Coboundary Polynomials
    Jurrius, Relinde
    MATHEMATICS IN COMPUTER SCIENCE, 2012, 6 (02) : 109 - 120
  • [6] Disjointness of the Möbius Transformation and Möbius Function
    El Houcein El Abdalaoui
    Igor E. Shparlinski
    Research in the Mathematical Sciences, 2019, 6
  • [7] On Mbius Form and Mbius Isoparametric Hypersurfaces
    Ze Jun HUDepartment of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (12) : 2077 - 2092
  • [8] On Möbius form and Möbius isoparametric hypersurfaces
    Ze Jun Hu
    Xiao Li Tian
    Acta Mathematica Sinica, English Series, 2009, 25 : 2077 - 2092
  • [9] Kazhdan-Lusztig polynomials of fan matroids, wheel matroids, and whirl matroids
    Lu, Linyuan
    Xie, Matthew H. Y.
    Yang, Arthur L. B.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 192
  • [10] Möbius
    J. W. Alden
    Nature, 2014, 515 : 304 - 304