Observations on some classes of operators on C(K,X)

被引:0
|
作者
I. Ghenciu
R. Popescu
机构
[1] University of Wisconsin-River Falls,
[2] University of Pittsburgh,undefined
来源
Analysis Mathematica | 2024年 / 50卷
关键词
weak Dunford–Pettis operator; weak; Dunford–Pettis operator; weak p-convergent operator; weak; p-convergent operator; limited completely continuous operator; limited p-convergent operator; 46B20; 46B25; 46B28;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose X and Y are Banach spaces, K is a compact Hausdorff space, Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma$$\end{document} is the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-algebra of Borel subsets of K, C(K,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(K,X)$$\end{document} is the Banach space of all continuous X-valued functions (with the supremum norm), and T:C(K,X)→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T \colon C(K,X)\to Y$$\end{document} is a strongly bounded operator with representing measure m:Σ→L(X,Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \colon \Sigma \to L(X,Y)$$\end{document}. We show that if T^:B(K,X)→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{T} \colon B(K, X) \to Y$$\end{document} is its extension, then T is weak Dunford--Pettis (resp.weak* Dunford--Pettis, weak p-convergent, weak*p-convergent) if and only if T^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{T}$$\end{document} has the same property.
引用
收藏
页码:127 / 148
页数:21
相关论文
共 50 条