Extremes of Lévy driven mixed MA processes with convolution equivalent distributions

被引:0
|
作者
Vicky Fasen
机构
[1] Technische Universität München,Center for Mathematical Sciences
来源
Extremes | 2009年 / 12卷
关键词
Convolution equivalent distribution; Extreme value theory; MA process; Marked point process; Mixed MA process; Point process; Random measure; Shot noise process; Subexponential distribution; SupOU process; Primary—60G70; Secondary—60F05, 60G10, 60G55;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the extremal behavior of stationary mixed MA processes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y(t)=\int_{\mathbb{R}_+\times\mathbb{R}}f(r,t-s)\,d\,\Lambda(r,s)$\end{document} for t ≥ 0, where f is a deterministic function and Λ is an infinitely divisible and independently scattered random measure. Particular examples of mixed MA processes are superpositions of Ornstein-Uhlenbeck processes, applied as stochastic volatility models in Barndorff-Nielsen and Shephard (2001a). We assume that the finite dimensional distributions of Λ are in the class of convolution equivalent tails and in the maximum domain of attraction of the Gumbel distribution. On the one hand, we compute the tail behavior of Y(0) and supt ∈ [0,1]Y(t). On the other hand, we study the extremes of Y by means of marked point processes based on maxima of Y in random intervals. A complementary result guarantees the convergence of the running maxima of Y to the Gumbel distribution.
引用
收藏
页码:265 / 296
页数:31
相关论文
共 50 条