EHHR: an efficient evolutionary hyper-heuristic based recommender framework for short-text classifier selection

被引:0
|
作者
Bushra Almas
Hasan Mujtaba
Kifayat Ullah Khan
机构
[1] National University of Computer and Emerging Sciences,Department of Computer Science
[2] Quaid-i-Azam University,Institute of Information Technology
来源
Cluster Computing | 2023年 / 26卷
关键词
Machine learning; Social media; Hyper-heuristics; Short-text classification; Evolutionary algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
With various machine learning heuristics, it becomes difficult to choose an appropriate heuristic to classify short-text emerging from various social media sources in the form of tweets and reviews. The No Free Lunch theorem asserts that no heuristic applies to all problems indiscriminately. Regardless of their success, the available classifier recommendation algorithms only deal with numeric data. To cater to these limitations, an umbrella classifier recommender must determine the best heuristic for short-text data. This paper presents an efficient reminisce-enabled classifier recommender framework to recommend a heuristic for new short-text data classification. The proposed framework, “Efficient Evolutionary Hyper-heuristic based Recommender Framework for Short-text Classifier Selection (EHHR),” reuses the previous solutions to predict the performance of various heuristics for an unseen problem. The Hybrid Adaptive Genetic Algorithm (HAGA) in EHHR facilitates dataset-level feature optimization and performance prediction. HAGA reveals that the influential features for recommending the best short-text heuristic are the average entropy, mean length of the word string, adjective variation, verb variation II, and average hard examples. The experimental results show that HAGA is 80% more accurate when compared to the standard Genetic Algorithm (GA). Additionally, EHHR clusters datasets and rank heuristics cluster-wise. EHHR clusters 9 out of 10 problems correctly.
引用
收藏
页码:1425 / 1446
页数:21
相关论文
共 50 条
  • [1] EHHR: an efficient evolutionary hyper-heuristic based recommender framework for short-text classifier selection
    Almas, Bushra
    Mujtaba, Hasan
    Khan, Kifayat Ullah
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (02): : 1425 - 1446
  • [2] A Unified Framework of Graph-Based Evolutionary Multitasking Hyper-Heuristic
    Hao, Xingxing
    Qu, Rong
    Liu, Jing
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (01) : 35 - 47
  • [3] An evolutionary algorithm based hyper-heuristic framework for the set packing problem
    Chaurasia, Sachchida Nand
    Kim, Joong Hoon
    INFORMATION SCIENCES, 2019, 505 : 1 - 31
  • [4] A hyper-heuristic based framework for dynamic optimization problems
    Topcuoglu, Haluk Rahmi
    Ucar, Abdulvahid
    Altin, Lokman
    APPLIED SOFT COMPUTING, 2014, 19 : 236 - 251
  • [5] Selection Constructive based Hyper-heuristic for Dynamic Scheduling
    Gomes, S.
    Madureira, A.
    Cunha, B.
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [6] MatHH: A Matlab-based Hyper-Heuristic framework
    Cruz-Duarte, Jorge M.
    Ortiz-Bayliss, Jose C.
    Amaya, Ivan
    SOFTWAREX, 2022, 18
  • [7] An evolutionary-based hyper-heuristic approach for the Jawbreaker puzzle
    S. Salcedo-Sanz
    J. M. Matías-Román
    S. Jiménez-Fernández
    A. Portilla-Figueras
    L. Cuadra
    Applied Intelligence, 2014, 40 : 404 - 414
  • [8] An Evolutionary Algorithm Based Hyper-heuristic for the Set Packing Problem
    Chaurasia, Sachchida Nand
    Jung, Donghwi
    Lee, Ho Min
    Kim, Joong Hoon
    HARMONY SEARCH AND NATURE INSPIRED OPTIMIZATION ALGORITHMS, 2019, 741 : 259 - 268
  • [9] An evolutionary-based hyper-heuristic approach for the Jawbreaker puzzle
    Salcedo-Sanz, S.
    Matias-Roman, J. M.
    Jimenez-Fernandez, S.
    Portilla-Figueras, A.
    Cuadra, L.
    APPLIED INTELLIGENCE, 2014, 40 (03) : 404 - 414
  • [10] New feature selection paradigm based on hyper-heuristic technique
    Ibrahim, Rehab Ali
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    El-Abd, Mohammed
    Lu, Songfeng
    APPLIED MATHEMATICAL MODELLING, 2021, 98 : 14 - 37