Irregular Fluctuations in Uncoupled Map Lattices

被引:0
|
作者
Karl W. Kratky
Karl E. Kürten
机构
[1] University of Vienna,Institute for Experimental Physics
来源
关键词
Uncoupled logistic maps; chaos; fluctuations; theoretical models; computer simulations;
D O I
暂无
中图分类号
学科分类号
摘要
Analytic approximations for the spatial average and its variance are derived for a system of N uncoupled chaotic logistic maps with growth parameter r = 4. The arising nontrivial closure problem is investigated with various techniques related to the classical moment problem. A Lyapunov-like linear stability analysis is presented for the transient as well as for the fluctuation regime.
引用
收藏
页码:749 / 765
页数:16
相关论文
共 50 条
  • [1] Irregular fluctuations in uncoupled map lattices
    Kratky, KW
    Kurten, KE
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) : 749 - 765
  • [2] Characterizing spontaneous irregular behavior in coupled map lattices
    Dobyns, Y
    Atmanspacher, H
    CHAOS SOLITONS & FRACTALS, 2005, 24 (01) : 313 - 327
  • [3] DECENTRALIZED DELAYED FEEDBACK CONTROL OF COUPLED MAP LATTICES ON IRREGULAR NETWORK TOPOLOGIES
    Konishi, Keiji
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3351 - 3358
  • [4] Clusters in irregular areas and lattices
    Wieczorek, William F.
    Delmerico, Alan M.
    Rogerson, Peter A.
    Wong, David W. S.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (01) : 67 - 74
  • [5] On the expansion map of lattices
    Panjarike, Pallavi
    Kuncham, Syam Prasad
    Nayak, Aishwarya Neralakatte
    Al-Tahan, Madeleine
    Sahoo, Tapatee
    Panackal, Harikrishnan
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [6] IRREGULAR AMPLITUDE FLUCTUATIONS OF MAGNETOELASTIC
    BOKOV, LA
    PROKOPOV, AR
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1976, (04): : 136 - 137
  • [7] AN IRREGULAR HORN SENTENCE IN SUBMODULE LATTICES
    CZEDLI, G
    HUTCHINSON, G
    ACTA SCIENTIARUM MATHEMATICARUM, 1987, 51 (1-2): : 35 - 38
  • [8] Quasicontinuum method extended to irregular lattices
    Mikes, Karel
    Jirasek, Milan
    COMPUTERS & STRUCTURES, 2017, 192 : 50 - 70
  • [9] Gabor Frames over Irregular Lattices
    Peter G. Casazza
    Ole Christensen
    Advances in Computational Mathematics, 2003, 18 : 329 - 344
  • [10] Gabor frames over irregular lattices
    Casazza, PG
    Christensen, O
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) : 329 - 344