Big Data in electrophysiology; [Big data in der Elektrophysiologie]

被引:1
|
作者
Nedios S. [1 ,4 ]
Iliodromitis K. [2 ,3 ]
Kowaleski C. [1 ]
Bollmann A. [1 ]
Hindricks G. [1 ]
Dagres N. [1 ]
Bogossian H. [2 ,3 ]
机构
[1] Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig
[2] Department of Cardiology and Rhythmology, Ev. Krankenhaus Hagen, Hagen
[3] Department of Cardiology, University Witten/Herdecke, Witten
[4] Rhythmologie, Herzzentrum Leipzig, Universität Leipzig, Strümpellstr. 39, Leipzig
关键词
Arrhythmias; Automation; Data capture; Machine learning; Precision medicine;
D O I
10.1007/s00399-022-00837-z
中图分类号
学科分类号
摘要
The quantity of data produced and captured in medicine today is unprecedented. Technological improvements and automation have expanded the traditional statistical methods and enabled the analysis of Big Data. This has permitted the discovery of new associations with a granularity that was previously hidden to human eyes. In the first part of this review, the authors would like to provide an overview of basic Machine Learning (ML) principles and techniques in order to better understand their application in recent publications about cardiac arrhythmias. In the second part, ML-enabled advances in disease detection and diagnosis, outcome prediction, and novel disease characterization in topics like electrocardiography, atrial fibrillation, ventricular arrhythmias, and cardiac devices are presented. Finally, the limitations and challenges of applying ML in clinical practice, such as validation, replication, generalizability, and regulatory issues, are discussed. More carefully designed studies and collaborations are needed for ML to become feasible, trustworthy, accurate, and reproducible and to reach its full potential for patient-oriented precision medicine. © 2022, The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
引用
收藏
页码:26 / 33
页数:7
相关论文
共 50 条
  • [1] Erratum to: Big Data in electrophysiologyErratum zu: Big data in der Elektrophysiologie
    Sotirios Nedios
    Konstantinos Iliodromitis
    Christopher Kowalewski
    Andreas Bollmann
    Gerhard Hindricks
    Nikolaos Dagres
    Harilaos Bogossian
    Herzschrittmachertherapie + Elektrophysiologie, 2022, 33 (2) : 242 - 242
  • [2] Big data in official statistics [Big Data in der amtlichen Statistik]
    Zwick M.
    Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 2015, 58 (8) : 838 - 843
  • [3] Big Data in der BildgebungBig data in imaging
    Philipp Sewerin
    Benedikt Ostendorf
    Axel J. Hueber
    Arnd Kleyer
    Zeitschrift für Rheumatologie, 2018, 77 (3) : 203 - 208
  • [4] Big data (Big data)
    Miguel Castagnino, Juan
    ACTA BIOQUIMICA CLINICA LATINOAMERICANA, 2018, 52 (03): : 279 - 280
  • [5] Big data is or big data are
    Samaranayake, L.
    BRITISH DENTAL JOURNAL, 2018, 224 (12) : 916 - 916
  • [6] Big data is or big data are
    L. Samaranayake
    British Dental Journal, 2018, 224 : 916 - 916
  • [7] Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology
    van de Leur, Rutger R.
    Boonstra, Machteld J.
    Bagheri, Ayoub
    Roudijk, Rob W.
    Sammani, Arjan
    Taha, Karim
    Doevendans, Pieter A. F. M.
    van der Harst, Pim
    van Dam, Peter M.
    Hassink, Rutger J.
    van Es, Rene
    Asselbergs, Folkert W.
    ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW, 2020, 9 (03) : 146 - 154
  • [8] „Big Data“ – auch in der Rheumatologie relevant?Big data—also relevant in rheumatology?
    G.‑R. Burmester
    T. Häupl
    Zeitschrift für Rheumatologie, 2018, 77 (3) : 192 - 194
  • [10] The politics of big data. Big data, big brother?
    Mager, Astrid
    INFORMATION COMMUNICATION & SOCIETY, 2019, 22 (10) : 1523 - 1525