Bi-Sobolev Extensions

被引:0
|
作者
Aleksis Koski
Jani Onninen
机构
[1] Aalto University,Department of Mathematics and System Analysis
[2] Syracuse University,Department of Mathematics
[3] University of Jyväskylä,Department of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Sobolev homeomorphisms; Sobolev extensions; Beurling–Ahlfors extension; Harmonic extension; Quasiconformal mapping and mapping of finite distortion; Primary 46E35; 30C62; Secondary 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling–Ahlfors extension theorem is obtained. Furthermore we show that the existing extension techniques such as applying either the harmonic or the Beurling–Ahlfors operator work poorly in the degenerated setting. This also gives an affirmative answer to a question of Karafyllia and Ntalampekos.
引用
收藏
相关论文
共 50 条
  • [1] Bi-Sobolev Extensions
    Koski, Aleksis
    Onninen, Jani
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [2] Composition of bi-Sobolev homeomorphisms
    Greco, Luigi
    Sbordone, Carlo
    Schiattarella, Roberta
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (01) : 61 - 80
  • [3] Bi-Sobolev boundary singularities
    Iwaniec T.
    Onninen J.
    Zhu Z.
    Complex Analysis and its Synergies, 2023, 9 (1)
  • [4] SOME REMARKS ON SOBOLEV AND BI-SOBOLEV MAPPINGS
    D’Onofrio L.
    Molica Bisci G.
    Journal of Mathematical Sciences, 2024, 280 (1) : 50 - 60
  • [5] On the regularity theory of bi-Sobolev mappings
    Capone, C.
    Formica, M. R.
    Giova, R.
    Schiattarella, R.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (04) : 527 - 548
  • [6] Bi-Sobolev homeomorphisms and Bqp classes
    Formica, Maria Rosaria
    Pietroluongo, Mariafortuna
    RICERCHE DI MATEMATICA, 2017, 66 (02) : 313 - 332
  • [7] On the bi-Sobolev planar homeomorphisms and their approximation
    Pratelli, Aldo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 154 : 258 - 268
  • [8] Bi-Sobolev mappings and elliptic equations in the plane
    Hencl, S.
    Moscariello, G.
    di Napoli, A. Passarelli
    Sbordone, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) : 22 - 32
  • [9] Bi-Sobolev mappings and Kp-distortions in the plane
    Carozza, M.
    Giannetti, F.
    di Napoli, A. Passarelli
    Sbordone, C.
    Schiattarella, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1232 - 1246
  • [10] Bi-Sobolev homeomorphism with zero minors almost everywhere
    Cerny, Robert
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (01) : 1 - 30