Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths ≥2 and ≥4 in Algebraic Surfaces

被引:0
|
作者
N. V. Timofeeva
机构
[1] K. D. Ushinskii Yaroslavl State Pedagogical University,
来源
Mathematical Notes | 2003年 / 73卷
关键词
projective algebraic surface; Hilbert scheme; zero-dimensional subscheme; varieties of complete pairs; torus group;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the varieties \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$X_{d_1 d_2 } $$ \end{document} of complete pairs of zero-dimensional subschemes of lengths d1≥ 2, d2≥ 4 on a smooth irreducible projective algebraic surface are singular.
引用
收藏
页码:697 / 705
页数:8
相关论文
共 50 条