The autoresonance threshold in a system of weakly coupled oscillators

被引:0
|
作者
Glebov S.G. [1 ]
Kiselev O.M. [2 ]
Lazarev V.A. [1 ]
机构
[1] Ufa State Petroleum Technical University, Ufa 450062
[2] Institute of Mathematics with Computing Centre, Ufa 450077
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Asymptotic Solution; Fundamental Matrix; Couple Oscillator; Perturbation Amplitude;
D O I
10.1134/S0081543807060077
中图分类号
学科分类号
摘要
A system of two weakly coupled oscillators is investigated. It is shown that under an external periodic perturbation a capture into resonance may occur. A description of this effect by the methods of asymptotic analysis, as well as a numerical simulation, is presented. An explicit formula for the threshold value of the perturbation amplitude at which the resonance occurs is obtained. © 2007 Pleiades Publishing, Ltd.
引用
收藏
页码:S111 / S123
页数:12
相关论文
共 50 条
  • [1] The autoresonance threshold in a system of weakly coupled oscillators
    Glebov, S. G.
    Kiselev, O. M.
    Lazarev, V. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2007, 13 (02): : 43 - 54
  • [2] Autoresonance versus localization in weakly coupled oscillators
    Kovaleva, Agnessa
    Manevitch, Leonid I.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 320 : 1 - 8
  • [3] DYNAMIC AUTORESONANCE AND GLOBAL CHAOS IN A SLOWLY EVOLVING SYSTEM OF 2 COUPLED OSCILLATORS
    COHEN, G
    MEERSON, B
    PHYSICAL REVIEW E, 1993, 47 (02): : 967 - 975
  • [4] Internal autoresonance in coupled oscillators with slowly decaying frequency
    Kovaleva, Agnessa
    Manevitch, Leonid I.
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [5] WEAKLY COUPLED HARMONIC OSCILLATORS
    PONZO, PJ
    WAX, N
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 26 (03) : 508 - 527
  • [6] Hyperbolic chaos in a system of resonantly coupled weakly nonlinear oscillators
    Turukina, L. V.
    Pikovsky, A.
    PHYSICS LETTERS A, 2011, 375 (11) : 1407 - 1411
  • [7] Synchronization of weakly coupled canard oscillators
    Ersoz, Elif Koksal
    Desroches, Mathieu
    Krupa, Martin
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 349 : 46 - 61
  • [8] Emergent hypernetworks in weakly coupled oscillators
    Eddie Nijholt
    Jorge Luis Ocampo-Espindola
    Deniz Eroglu
    István Z. Kiss
    Tiago Pereira
    Nature Communications, 13
  • [9] Synchronization and desynchronization of weakly coupled oscillators
    Kurrer, C
    PHYSICAL REVIEW E, 1997, 56 (04): : 3799 - 3802
  • [10] Weakly coupled oscillators and topological degree
    Feckan, Michal
    Ma, Ruyun
    Thompson, Bevan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (06): : 559 - 571