Extensions of Self-Improving Sorters

被引:0
|
作者
Siu-Wing Cheng
Kai Jin
Lie Yan
机构
[1] HKUST,Department of Computer Science and Engineering
来源
Algorithmica | 2020年 / 82卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Ailon et al. (SIAM J Comput 40(2):350–375, 2011) proposed a self-improving sorter that tunes its performance to an unknown input distribution in a training phase. The input numbers x1,x2,…,xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1,x_2,\ldots ,x_n$$\end{document} come from a product distribution, that is, each xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} is drawn independently from an arbitrary distribution Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}_i$$\end{document}. We study two relaxations of this requirement. The first extension models hidden classes in the input. We consider the case that numbers in the same class are governed by linear functions of the same hidden random parameter. The second extension considers a hidden mixture of product distributions.
引用
收藏
页码:88 / 106
页数:18
相关论文
共 50 条
  • [1] Extensions of Self-Improving Sorters
    Cheng, Siu-Wing
    Jin, Kai
    Yan, Lie
    ALGORITHMICA, 2020, 82 (01) : 88 - 106
  • [2] Self-improving GBuilder
    Jane Alfred
    Nature Reviews Genetics, 2001, 2 (4) : 240 - 240
  • [3] SELF-IMPROVING ALGORITHMS
    Ailon, Nir
    Chazelle, Bernard
    Clarkson, Kenneth L.
    Liu, Ding
    Mulzer, Wolfgang
    Seshadhri, C.
    SIAM JOURNAL ON COMPUTING, 2011, 40 (02) : 350 - 375
  • [4] Self-Improving Algorithms
    Ailon, Nir
    Chazelle, Bernard
    Comandurt, Seshadhri
    Liu, Ding
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 261 - 270
  • [5] Self-improving AI: an Analysis
    John Storrs Hall
    Minds and Machines, 2007, 17 : 249 - 259
  • [6] NONLOCAL SELF-IMPROVING PROPERTIES
    Kuusi, Tuomo
    Mingione, Giuseppe
    Sire, Yannick
    ANALYSIS & PDE, 2015, 8 (01): : 57 - 114
  • [7] Self-improving AI: An analysis
    Hall, John Storrs
    MINDS AND MACHINES, 2007, 17 (03) : CP6 - 259
  • [8] A Generalization of Self-Improving Algorithms
    Jin, Kai
    Cheng, Siu-Wing
    Chiu, Man-Kwun
    Wong, Man Ting
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (03)
  • [9] SELF-IMPROVING QUADRATIC TUTOR
    OSHEA, T
    INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1979, 11 (01): : 97 - 124
  • [10] Self-Improving Biped Locomotion
    Teixeira, C.
    Costa, L.
    Santos, C.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1029 - 1032