Filippov FitzHugh-Nagumo Neuron Model with Membrane Potential Threshold Control Policy

被引:0
|
作者
Tao Dong
Huiyun Zhu
机构
[1] Southwest University,Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronics and Information Engineering
来源
Neural Processing Letters | 2021年 / 53卷
关键词
Filippov system; FitzHugh-Nagumo (FHN) neuron model; Membrane potential threshold control policy; Sliding bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a novel FitzHugh-Nagumo (FHN) neuron model with membrane potential threshold control policy is proposed. As the membrane potential threshold control policy is a switching control policy, our proposed model is a Filippov system, which is different from the existing FHN model. For this model, first, the sliding segments and sliding regions are investigated. Then, based on the obtained sliding regions, we discuss the null-clines and the existence conditions of various equilibria such as regular equilibrium, virtual equilibrium and boundary equilibrium. By choosing the membrane potential threshold as the bifurcation parameter, the boundary node bifurcation, pseudo-saddle-node bifurcation and the global touching bifurcation are investigated by using numerical techniques. Furthermore, the effectiveness and correctness of the proposed FHN model with membrane potential threshold control policy are verified by circuit simulation. Numerical examples show that the membrane potential threshold guided switching may cause complex dynamics.
引用
收藏
页码:3801 / 3824
页数:23
相关论文
共 50 条
  • [1] Filippov FitzHugh-Nagumo Neuron Model with Membrane Potential Threshold Control Policy
    Dong, Tao
    Zhu, Huiyun
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3801 - 3824
  • [2] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [3] On a modification of the FitzHugh-Nagumo neuron model
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 443 - 461
  • [4] On a Modification of the FitzHugh-Nagumo Neuron Model
    Glyzin, S. D.
    Kolesov, A. Yu
    Rozov, N. Kh
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (03) : 443 - 461
  • [5] THE DETECTION THRESHOLD, NOISE AND STOCHASTIC RESONANCE IN THE FITZHUGH-NAGUMO NEURON MODEL
    PEI, X
    BACHMANN, K
    MOSS, F
    PHYSICS LETTERS A, 1995, 206 (1-2) : 61 - 65
  • [6] A CMOS IMPLEMENTATION OF FITZHUGH-NAGUMO NEURON MODEL
    LINARES-BARRANCO, B
    SANCHEZ-SINENCIO, E
    RODRIGUEZVAZQUEZ, A
    HUERTAS, JL
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (07) : 956 - 965
  • [7] Investigation of Microcontroller Based Model of FitzHugh-Nagumo Neuron
    Petrovas, Andrius
    Lisauskas, Saulius
    Slepikas, Alvydas
    PROCEEDINGS OF 15TH INTERNATIONAL CONFERENCE ON MECHATRONICS - MECHATRONIKA 2012, 2012, : 230 - 233
  • [8] Nonadiabatic resonances in a noisy Fitzhugh-Nagumo neuron model
    Massanés, SR
    Vicente, CJP
    PHYSICAL REVIEW E, 1999, 59 (04) : 4490 - 4497
  • [9] Subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model
    Zhu, Jinjie
    Kong, Chen
    Liu, Xianbin
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [10] A fractional-order improved FitzHugh-Nagumo neuron model
    Kumar, Pushpendra
    Erturk, Vedat Suat
    CHINESE PHYSICS B, 2025, 34 (01)